Abstract
ABSTRACTPCR has been a reliable and inexpensive method for nucleic acid detection in the past several decades. In particular, multiplex PCR is a powerful tool to analyze many biomarkers in the same reaction, thus maximizing detection sensitivity and reducing sample usage. However, balancing the amplification kinetics between amplicons and distinguishing them can be challenging, diminishing the broad adoption of high order multiplex PCR panels. Here, we present a new paradigm in PCR amplification and multiplexed detection using UltraPCR. UltraPCR utilizes a simple centrifugation workflow to split a PCR reaction into ∼34 million partitions, forming an optically clear pellet of spatially separated reaction compartments in a PCR tube. Afterin situthermocycling, light sheet scanning is used to produce a 3D reconstruction of the fluorescent positive compartments within the pellet. At typical sample DNA concentrations, the magnitude of partitions offered by UltraPCR dictate that the vast majority of target molecules occupy a compartment uniquely. This single molecule realm allows for isolated amplification events, thereby eliminating competition between different targets and generating unambiguous optical signals for detection. Using a 4-color optical setup, we demonstrate that we can incorporate 10 different fluorescent dyes in the same UltraPCR reaction. We further push multiplexing to an unprecedented level by combinatorial labeling with fluorescent dyes — referred to as “comboplex” technology. Using the same 4-color optical setup, we developed a 22-target comboplex panel that can detect all targets simultaneously at high precision. Collectively, UltraPCR has the potential to push PCR applications beyond what is currently available, enabling a new class of precision genomics assays.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献