New realm of precision multiplexing enabled by massively-parallel single molecule UltraPCR

Author:

Lai Janice H.ORCID,Keum Jung won,Lee Haeun G.,Molaei MehdiORCID,Blair Emily J.,Li SixingORCID,Soliman Jesse W.,Raol Vedant K.,Barker Camille L.,Fodor Stephen P.A.,Fan H. Christina,Shum Eleen Y.ORCID

Abstract

ABSTRACTPCR has been a reliable and inexpensive method for nucleic acid detection in the past several decades. In particular, multiplex PCR is a powerful tool to analyze many biomarkers in the same reaction, thus maximizing detection sensitivity and reducing sample usage. However, balancing the amplification kinetics between amplicons and distinguishing them can be challenging, diminishing the broad adoption of high order multiplex PCR panels. Here, we present a new paradigm in PCR amplification and multiplexed detection using UltraPCR. UltraPCR utilizes a simple centrifugation workflow to split a PCR reaction into ∼34 million partitions, forming an optically clear pellet of spatially separated reaction compartments in a PCR tube. Afterin situthermocycling, light sheet scanning is used to produce a 3D reconstruction of the fluorescent positive compartments within the pellet. At typical sample DNA concentrations, the magnitude of partitions offered by UltraPCR dictate that the vast majority of target molecules occupy a compartment uniquely. This single molecule realm allows for isolated amplification events, thereby eliminating competition between different targets and generating unambiguous optical signals for detection. Using a 4-color optical setup, we demonstrate that we can incorporate 10 different fluorescent dyes in the same UltraPCR reaction. We further push multiplexing to an unprecedented level by combinatorial labeling with fluorescent dyes — referred to as “comboplex” technology. Using the same 4-color optical setup, we developed a 22-target comboplex panel that can detect all targets simultaneously at high precision. Collectively, UltraPCR has the potential to push PCR applications beyond what is currently available, enabling a new class of precision genomics assays.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3