Kairos infersin situhorizontal gene transfer in longitudinally sampled microbiomes through microdiversity-aware sequence analysis

Author:

Brown Connor L.,Cheung Yat Fei,Song Haoqiu,Snead Delaney,Vikesland Peter,Pruden Amy,Zhang Liqing

Abstract

AbstractHorizontal gene transfer (HGT) occurring within microbiomes is linked to complex environmental and ecological dynamics that are challenging to replicate in controlled settings. Consequently, most extant studies of microbiome HGT are either simplistic experimental settings with tenuous relevance to real microbiomes or correlative studies that assume that HGT potential is a function of the relative abundance of mobile genetic elements (MGEs), the vehicles of HGT. Here we introduce Kairos as a bioinformatic tool deployed in nextflow for detecting HGT events “in situ,” i.e., within a microbiome, through analysis of time-series metagenomic sequencing data. Thein-situframework proposed here leverages available metagenomic data from a longitudinally sampled microbiome to assess whether the chronological occurrence of potential donors, recipients, and putatively transferred regions could plausibly have arisen due to HGT over a range of defined time periods. The centerpiece of the Kairos workflow is a novel competitive read alignment method that enables discernment of even very similar genomic sequences, such as those produced by MGE-associated recombination. A key advantage of Kairos is its reliance on assemblies rather than metagenome assembled genomes (MAGs), which avoids systematic exclusion of accessory genes associated with the binning process. In an example test-case of real world data, use of assemblies directly produced a 264-fold increase in the number of antibiotic resistance genes included in the analysis of HGT compared to analysis of MAGs with MetaCHIP. Further,in silicoevaluation of contig taxonomy was performed to assess the accuracy of classification for both chromosomally- and MGE-derived sequences, indicating a high degree of accuracy even for conjugative plasmids up to the level of class or order. Thus, Kairos enables the analysis of very recent HGT events, making it suitable for studying rapid prokaryotic adaptation in environmental systems without disturbing the ornate ecological dynamics associated with microbiomes. Current versions of the Kairos workflow are available here:https://github.com/clb21565/kairos.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3