Major data analysis errors invalidate cancer microbiome findings

Author:

Gihawi Abraham1,Ge Yuchen23,Lu Jennifer23,Puiu Daniela23,Xu Amanda2,Cooper Colin S.1,Brewer Daniel S.14,Pertea Mihaela235,Salzberg Steven L.2356ORCID

Affiliation:

1. Norwich Medical School, University of East Anglia , Norwich, United Kingdom

2. Center for Computational Biology, Johns Hopkins University , Baltimore, Maryland, USA

3. Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland, USA

4. Earlham Institute, Norwich Research Park , Colney Lane, Norwich, United Kingdom

5. Department of Computer Science, Johns Hopkins University , Baltimore, Maryland, USA

6. Department of Biostatistics, Johns Hopkins University , Baltimore, Maryland, USA

Abstract

ABSTRACT We re-analyzed the data from a recent large-scale study that reported strong correlations between DNA signatures of microbial organisms and 33 different cancer types and that created machine-learning predictors with near-perfect accuracy at distinguishing among cancers. We found at least two fundamental flaws in the reported data and in the methods: (i) errors in the genome database and the associated computational methods led to millions of false-positive findings of bacterial reads across all samples, largely because most of the sequences identified as bacteria were instead human; and (ii) errors in the transformation of the raw data created an artificial signature, even for microbes with no reads detected, tagging each tumor type with a distinct signal that the machine-learning programs then used to create an apparently accurate classifier. Each of these problems invalidates the results, leading to the conclusion that the microbiome-based classifiers for identifying cancer presented in the study are entirely wrong. These flaws have subsequently affected more than a dozen additional published studies that used the same data and whose results are likely invalid as well. IMPORTANCE Recent reports showing that human cancers have a distinctive microbiome have led to a flurry of papers describing microbial signatures of different cancer types. Many of these reports are based on flawed data that, upon re-analysis, completely overturns the original findings. The re-analysis conducted here shows that most of the microbes originally reported as associated with cancer were not present at all in the samples. The original report of a cancer microbiome and more than a dozen follow-up studies are, therefore, likely to be invalid.

Funder

HHS | NIH | National Human Genome Research Institute

HHS | NIH | National Institute of General Medical Sciences

Prostate Cancer UK

Cancer Research UK

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3