A lightweight data-driven spiking neural network model ofDrosophilaolfactory nervous system with dedicated hardware support

Author:

Nanami Takuya,Yamada Daichi,Someya Makoto,Hige ToshihideORCID,Kazama Hokto,Kohno Takashi

Abstract

AbstractData-driven spiking neural network (SNN) models are vital for understanding the brain’s information processing at the cellular and synaptic level. While extensive research has focused on developing data-driven SNN models for mammalian brains, their complexity poses challenges in achieving precision. Network topology often relies on statistical inference, and the functions of specific brain regions and supporting neuronal activities remain unclear. Additionally, these models demand significant computational resources. Here, we propose a lightweight data-driven SNN model that strikes a balance between simplicity and reproducibility. We target theDrosophilaolfactory nervous system, extracting its network topology from connectome data. The model implemented on an entry-level field-programmable gate array successfully reproduced the functions and characteristic spiking activities of different neuron types. Our approach thus provides a foundation for constructing lightweightin silicomodels that are critical for investigating the brain’s information processing mechanisms at the cellular and synaptic level through an analysis-by-construction approach and applicable to edge artificial intelligence (AI) systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3