Automated Extraction and Classification of Drug Prescriptions in Electronic Health Records: Introducing the PRESNER Pipeline

Author:

Colón-Ruiz CristóbalORCID,Fitzgerald TomasORCID,Segura-Bedmar IsabelORCID,Birney EwanORCID,Herrero-Zazo MariaORCID

Abstract

AbstractElectronic health record (EHR) systems with prescription data offer vast potential in pharmacoepidemiology and pharmacogenomics. The large amount of clinical data recorded in these systems requires automatic processing to extract relevant information. This paper introduces PRESNER, a name entity recognition (NER) and classification pipeline for EHR prescription data.The pipeline uses the pre-trained transformer Bio-ClinicalBERT fine-tuned on UK Biobank prescription entries manually annotated with medication-related information (drug name, route of administration, pharmaceutical form, strength, and dosage) as the core NER system. Moreover, PRESNER also maps drugs to the Anatomical Therapeutic and Chemical (ATC) classification system and distinguishes between systemic and non-systemic drug products. It outperformed a baseline model combining the state-of-the-art Med7 and a dictionary-based approach from the ChEMBL database with a macro-average F1-score of 0.95 vs 0.71. In addition to UK Biobank prescription data, PRESNER can also be applied to other English prescription datasets, making it a versatile tool for researchers in the field.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3