Fexinidazole induced cytotoxicity is distinct from related anti-trypanosome nitroaromatic drugs

Author:

Rogers Indea,Berg Kenna,Ramirez Hayley,Hovel-Miner G AORCID

Abstract

ABSTRACTNitroaromatic drugs are of critical importance for the treatment of trypanosome infections in Africa and the Americas. Fexinidazole recently joined benznidazole and nifurtimox in this family when it was approved as the first oral therapy against Human African trypanosomiasis (HAT). Nitroaromatic prodrugs are bioactivated by the trypanosome-specific type I nitroreductase (NTR) enzyme that renders the compounds trypanocidal. A caveat to the specificity of NTR activation is the potential for drug resistance and cross-resistance that can arise if NTR expression or functionality is altered through mutation. The outcomes of NTR bioactivation of nitroaromatic compounds is variable but can include the formation highly reactive open chain nitriles that can damage biomolecules including DNA. A proposed mechanism of action of nitroaromatic compounds is the formation of reactive oxygen species (ROS) resulting in the formation of trypanocidal levels of DNA damage. Fexinidazole made its way to clinical approval without a significant interrogation of its effects on trypanosome biology and a limited understanding of its mechanism of action. Early reports mentioned fexinidazole potentially affects DNA synthesis but without supporting data. In this study, we evaluated and compared the cytotoxic effects of nifurtimox, benznidazole, and fexinidazole onTrypanosoma bruceiusing in vitro analyses. Specifically, we sought to differentiate between the proposed effects of nitroaromatics on DNA damage and DNA synthesis. Toward this goal we generated a novel γH2A-based flow cytometry assay that reports DNA damage formation in conjunction with cell cycle progression. Here we report that fexinidazole’s cytotoxic outcomes are distinct from the related drugs nifurtimox and benznidazole. Specifically, we show that fexinidazole treatment results in a pronounced defect in DNA synthesis that reduces the population of parasites in S phase. In contrast, treatment with nifurtimox and benznidazole appear accumulate DNA damage early in cell cycle and result in a defective G2population. The findings presented here bring us closer to understanding the anti-trypanosomatid mechanisms of action of nitroaromatic compounds, which will promote improved drug design and help combat potential drug resistance in the future. Our findings also highlight DNA synthesis inhibition as a powerful anti-parasitic drug target.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3