ComPRePS: An Automated Cloud-based Image Analysis tool to democratize AI in Digital Pathology
Author:
Mimar SayatORCID, Paul Anindya S., Lucarelli Nicholas, Border Samuel, Santo Briana A., Naglah Ahmed, Barisoni Laura, Hodgin Jeffrey, Rosenberg Avi Z, Clapp William, Sarder Pinaki,
Abstract
ABSTRACTArtificial intelligence (AI) has extensive applications in a wide range of disciplines including healthcare and clinical practice. Advances in high-resolution whole-slide brightfield microscopy allow for the digitization of histologically stained tissue sections, producing gigapixel-scale whole-slide images (WSI). The significant improvement in computing and revolution of deep neural network (DNN)-based AI technologies over the last decade allow us to integrate massively parallelized computational power, cutting-edge AI algorithms, and big data storage, management, and processing. Applied to WSIs, AI has created opportunities for improved disease diagnostics and prognostics with the ultimate goal of enhancing precision medicine and resulting patient care.The National Institutes of Health (NIH) has recognized the importance of developing standardized principles for data management and discovery for the advancement of science and proposed the Findable, Accessible, Interoperable, Reusable, (FAIR) Data Principles1with the goal of building a modernized biomedical data resource ecosystem to establish collaborative research communities. In line with this mission and to democratize AI-based image analysis in digital pathology, we propose ComPRePS: an end-to-end automatedComputationalRenalPathologySuite which combines massive scalability, on-demand cloud computing, and an easy-to-use web-based user interface for data upload, storage, management, slide-level visualization, and domain expert interaction. Moreover, our platform is equipped with both in-house and collaborator developed sophisticated AI algorithms in the back-end server for image analysis to identify clinically relevant micro-anatomic functional tissue units (FTU) and to extract image features.
Publisher
Cold Spring Harbor Laboratory
Reference12 articles.
1. Wilkinson, M. D. , Dumontier, M. , Aalbersberg, I. J. , Appleton, G. , Axton, M. , Baak, A. , Blomberg, N. , Boiten, J.-W. , da Silva Santos, L. B. , Bourne, P. E. , Bouwman, J. , Brookes, A. J. , Clark, T. , Crosas, M. , Dillo, I. , Dumon, O. , Edmunds, S. , Evelo, C. T. , Finkers, R. , Gonzalez-Beltran, A. , Gray, A. J. , Groth, P. , Goble, C. , Grethe, J. S. , Heringa, J. , ‘t Hoen, P. A. , Hooft, R. , Kuhn, T. , Kok, R. , Kok, J. , Lusher, S. J. , Martone, M. E. , Mons, A. , Packer, A. L. , Persson, B. , Rocca-Serra, P. , Roos, M. , van Schaik, R. , Sansone, S.-A. , Schultes, E. , Sengstag, T. , Slater, T. , Strawn, G. , Swertz, M. A. , Thompson, M. , van der Lei, J. , van Mulligen, E. , Velterop, J. , Waagmeester, A. , Wittenburg, P. , Wolstencroft, K. , Zhao, J. , and Mons, B. , “The fair guiding principles for scientific data management and stewardship,” Scientific Data 3 (Mar. 2016). 2. Histopathological image analysis: A review;IEEE Reviews in Biomedical Engineering,2009 3. Amgad, M. , Hodge, J. , Elsebaie, M. , Bodelon, C. , Puvanesarajah, S. , Gutman, D. , Siziopikou, K. , Goldstein, J. , Gaudet, M. , Teras, L. , and Cooper, L. , “A population-level computational histologic signature for invasive breast cancer prognosis,” (May 2023). 4. Lutnick, B. , Manthey, D. , Becker, J. U. , Ginley, B. , Moos, K. , Zuckerman, J. E. , Rodrigues, L. , Gallan, A. J. , Barisoni, L. , Alpers, C. E. , Wang, X. X. , Myakala, K. , Jones, B. A. , Levi, M. , Kopp, J. B. , Yoshida, T. , Zee, J. , Han, S. S. , Jain, S. , Rosenberg, A. Z. , Jen, K. Y. , and Sarder, P. t. K. P. M. P. , “A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology,” Communications Medicine 2 (Aug. 2022). 5. https://github.com/girder.
|
|