ComPRePS: An Automated Cloud-based Image Analysis tool to democratize AI in Digital Pathology

Author:

Mimar SayatORCID,Paul Anindya S.,Lucarelli Nicholas,Border Samuel,Santo Briana A.,Naglah Ahmed,Barisoni Laura,Hodgin Jeffrey,Rosenberg Avi Z,Clapp William,Sarder Pinaki,

Abstract

ABSTRACTArtificial intelligence (AI) has extensive applications in a wide range of disciplines including healthcare and clinical practice. Advances in high-resolution whole-slide brightfield microscopy allow for the digitization of histologically stained tissue sections, producing gigapixel-scale whole-slide images (WSI). The significant improvement in computing and revolution of deep neural network (DNN)-based AI technologies over the last decade allow us to integrate massively parallelized computational power, cutting-edge AI algorithms, and big data storage, management, and processing. Applied to WSIs, AI has created opportunities for improved disease diagnostics and prognostics with the ultimate goal of enhancing precision medicine and resulting patient care.The National Institutes of Health (NIH) has recognized the importance of developing standardized principles for data management and discovery for the advancement of science and proposed the Findable, Accessible, Interoperable, Reusable, (FAIR) Data Principles1with the goal of building a modernized biomedical data resource ecosystem to establish collaborative research communities. In line with this mission and to democratize AI-based image analysis in digital pathology, we propose ComPRePS: an end-to-end automatedComputationalRenalPathologySuite which combines massive scalability, on-demand cloud computing, and an easy-to-use web-based user interface for data upload, storage, management, slide-level visualization, and domain expert interaction. Moreover, our platform is equipped with both in-house and collaborator developed sophisticated AI algorithms in the back-end server for image analysis to identify clinically relevant micro-anatomic functional tissue units (FTU) and to extract image features.

Publisher

Cold Spring Harbor Laboratory

Reference12 articles.

1. Wilkinson, M. D. , Dumontier, M. , Aalbersberg, I. J. , Appleton, G. , Axton, M. , Baak, A. , Blomberg, N. , Boiten, J.-W. , da Silva Santos, L. B. , Bourne, P. E. , Bouwman, J. , Brookes, A. J. , Clark, T. , Crosas, M. , Dillo, I. , Dumon, O. , Edmunds, S. , Evelo, C. T. , Finkers, R. , Gonzalez-Beltran, A. , Gray, A. J. , Groth, P. , Goble, C. , Grethe, J. S. , Heringa, J. , ‘t Hoen, P. A. , Hooft, R. , Kuhn, T. , Kok, R. , Kok, J. , Lusher, S. J. , Martone, M. E. , Mons, A. , Packer, A. L. , Persson, B. , Rocca-Serra, P. , Roos, M. , van Schaik, R. , Sansone, S.-A. , Schultes, E. , Sengstag, T. , Slater, T. , Strawn, G. , Swertz, M. A. , Thompson, M. , van der Lei, J. , van Mulligen, E. , Velterop, J. , Waagmeester, A. , Wittenburg, P. , Wolstencroft, K. , Zhao, J. , and Mons, B. , “The fair guiding principles for scientific data management and stewardship,” Scientific Data 3 (Mar. 2016).

2. Histopathological image analysis: A review;IEEE Reviews in Biomedical Engineering,2009

3. Amgad, M. , Hodge, J. , Elsebaie, M. , Bodelon, C. , Puvanesarajah, S. , Gutman, D. , Siziopikou, K. , Goldstein, J. , Gaudet, M. , Teras, L. , and Cooper, L. , “A population-level computational histologic signature for invasive breast cancer prognosis,” (May 2023).

4. Lutnick, B. , Manthey, D. , Becker, J. U. , Ginley, B. , Moos, K. , Zuckerman, J. E. , Rodrigues, L. , Gallan, A. J. , Barisoni, L. , Alpers, C. E. , Wang, X. X. , Myakala, K. , Jones, B. A. , Levi, M. , Kopp, J. B. , Yoshida, T. , Zee, J. , Han, S. S. , Jain, S. , Rosenberg, A. Z. , Jen, K. Y. , and Sarder, P. t. K. P. M. P. , “A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology,” Communications Medicine 2 (Aug. 2022).

5. https://github.com/girder.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3