A population-level computational histologic signature for invasive breast cancer prognosis

Author:

Amgad Mohamed1,Hodge James2,Elsebaie Maha3,Bodelon Clara4ORCID,Puvanesarajah Samantha4,Gutman David5,Siziopikou Kalliopi6,Goldstein Jeffery7ORCID,Gaudet Mia8,Teras Lauren4,Cooper Lee9ORCID

Affiliation:

1. Department of Pathology, Northwestern University, Chicago, IL, USA

2. American Cancer Society

3. Department of Medicine, Cook County Hospital, Chicago, IL, USA

4. Department of Population Science, American Cancer Society

5. Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA

6. Department of Pathology, Northwestern University Feinberg School of Medicine

7. Northwestern University, Feinberg School of Medicine

8. Division of Cancer Epidemiology and Genetics, National Cancer Institute

9. Northwestern University

Abstract

Abstract Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists grade the microscopic appearance of breast tissue using the Nottingham criteria, which is qualitative and does not account for non-cancerous elements within the tumor microenvironment (TME). We present the Histomic Prognostic Signature (HiPS), a comprehensive, interpretable scoring of the survival risk incurred by breast TME morphology. HiPS uses deep learning to accurately map cellular and tissue structures in order to measure epithelial, stromal, immune, and spatial interaction features. It was developed using a population-level cohort from the Cancer Prevention Study (CPS)-II and validated using data from three independent cohorts, including the PLCO trial, CPS-3, and The Cancer Genome Atlas. HiPS consistently outperformed pathologists’ performance in predicting survival outcomes, independent of TNM stage and pertinent variables. This was largely driven by stromal and immune features. In conclusion, HiPS is a robustly validated biomarker to support pathologists and improve prognosis.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3