Author:
Stepanov Ivan,Gottshall Noah R.,Ahmadianyazdi Alireza,Sinha Daksh,Lockhart Ethan J.,Nguyen Tran N.H.,Hassan Sarmad,Horowitz Lisa F.,Yeung Raymond S.,Gujral Taranjit S.,Folch Albert
Abstract
AbstractThe scarcity of human biopsies available for drug testing is a paramount challenge for developing new therapeutics, disease models, and personalized treatments. Microtechnologies that combine the microscale manipulation of tissues and fluids offer the exciting possibility of miniaturizing both disease models and drug testing workflows on scarce human biopsies. Unfortunately, these technologies presently require microfluidic devices or robotic dispensers that are not widely accessible. We have rapidly-prototyped an inexpensive platform based on an off-the-shelf robot that can microfluidically manipulate live microtissues into/out of culture plates without using complicated accessories such as microscopes or pneumatic controllers. The robot integrates complex functions with a simple, cost-effective and compact construction, allowing placement inside a tissue culture hood for sterile workflows. We demonstrated a proof-of-concept cancer drug evaluation workflow of potential clinical utility using patient tumor biopsies with multiple drugs on 384-well plates. Our user-friendly, low-cost platform promises to make drug testing of microtissues broadly accessible to pharmaceutical, clinical, and biological laboratories.TeaserA low-cost robot for handling microtissues and catalyzing their use in cancer drug evaluation and personalized oncology.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献