Structural basis for surface activation of the classical complement cascade by the short pentraxin C-reactive protein

Author:

Noone Dylan P.ORCID,Isendoorn Marjolein M. E.ORCID,Hamers Sebastiaan M. W. R.ORCID,Keizer Mariska E.,Wulffelé Jip,van der Velden Tijn T.ORCID,Dijkstra Douwe J.ORCID,Trouw Leendert A.ORCID,Filippov Dmitri V.ORCID,Sharp Thomas H.ORCID

Abstract

AbstractHuman C-reactive protein (CRP) is a pentameric complex involved in defence against pathogens and regulation of autoimmunity. CRP is also a therapeutic target, with both administration and depletion of serum CRP being pursued as a possible treatment for autoimmune and cardiovascular diseases, among others. CRP binds to phosphocholine (PC) moieties on membranes in order to activate the complement system via the C1 complex, but it is unknown how CRP, or any pentraxin, binds to C1. Here, we present a cryo-electron tomography (cryoET)-derived structure of CRP bound to PC ligands and the C1 complex. To gain control of CRP binding, a synthetic mimotope of PC was synthesised and used to decorate cell-mimetic liposome surfaces. Structure-guided mutagenesis of CRP yielded a fully-active complex able to bind PC-coated liposomes that was ideal for cryoET and subtomogram averaging. In contrast to antibodies, which form Fc-mediated hexameric platforms to bind and activate the C1 complex, CRP formed rectangular platforms assembled from four laterally-associated CRP pentamers that bind only four of the six available globular C1 head groups. Potential residues mediating lateral association of CRP were identified from interactions between unit cells in existing crystal structures, which rationalised previously unexplained mutagenesis data regarding CRP-mediated complement activation. The structure also enabled interpretation of existing biochemical data regarding interactions mediating C1 binding, and identified additional residues for further mutagenesis studies. These structural data therefore provide a possible mechanism for regulation of complement by CRP, which limits complement progression and has consequences for how the innate immune system influences autoimmunity.Significance statementHuman C-reactive protein (CRP) activates the complement system to protect us from infections, but can also contribute towards progression of cardiovascular and autoimmune diseases when erroneously activated. To understand these processes, the authors used cryo-electron tomography to solve thein situstructure of surface-bound CRP interacting with the complement C1 complex. The structure revealed new interfaces that explain previous, sometimes contradictory, biochemical data. Comparisons with existing structures of antibody-mediated C1 activation revealed distinct structural differences that may explain how CRP modulates complement activity. Together, these structural data identify residues for mutagenesis to gain control over CRP functions, and provide new routes for future therapeutic developments.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3