Abstract
AbstractTranscatheter aortic valve replacement (TAVR) has rapidly displaced surgical aortic valve replacement (SAVR). However, certain post-TAVR complications persist, with cardiac conduction abnormalities (CCA) being one of the major ones. The elevated pressure exerted by the TAVR stent onto the conduction fibers situated between the aortic annulus and the His bundle, in proximity to the atrioventricular (AV) node, may disrupt the cardiac conduction leading to the emergence of CCA. In his study, anin-silicoframework was developed to assess the CCA risk, incorporating the effect of a dynamic beating heart and pre-procedural parameters such as implantation depth and preexisting cardiac asynchrony in the new onset of post-TAVR CCA. A self-expandable TAVR device deployment was simulated inside an electro-mechanically coupled beating heart model in five patient scenarios, including three implantation depths, and two preexisting cardiac asynchronies: (i) a right bundle branch block (RBBB) and (ii) a left bundle branch block (LBBB). Subsequently, several biomechanical parameters were analyzed to assess the post-TAVR CCA risk. The results manifested a lower cumulative contact pressure on the conduction fibers following TAVR for aortic deployment (0.018 MPa) compared to baseline (0.29 MPa) and ventricular deployment (0.52 MPa). Notably, the preexisting RBBB demonstrated a higher cumulative contact pressure (0.34 MPa) compared to the baseline and preexisting LBBB (0.25 MPa). Deeper implantation and preexisting RBBB cause higher stresses and contact pressure on the conduction fibers leading to an increased risk of post-TAVR CCA. Conversely, implantation above the MS landmark and preexisting LBBB reduces the risk.
Publisher
Cold Spring Harbor Laboratory