Preprocedural and procedural variables that predict new-onset conduction disturbances after transcatheter aortic valve replacement
-
Published:2022-03-31
Issue:1
Volume:22
Page:
-
ISSN:1471-2261
-
Container-title:BMC Cardiovascular Disorders
-
language:en
-
Short-container-title:BMC Cardiovasc Disord
Author:
Boonyakiatwattana Wongsaput, Maneesai Adisak, Chaithiraphan Vithaya, Jakrapanichakul Decho, Sakiyalak Pranya, Chunhamaneewat Narathip, Slisatkorn Worawong, Chotinaiwattarakul Chunhakasem, Pongakasira Rungtiwa, Wongpraparut NattawutORCID
Abstract
Abstract
Background
Conduction disturbances are a common complication after transcatheter aortic valve replacement (TAVR). The aim of this study was to investigate the preprocedural and procedural variables that predict new-onset conduction disturbances post-TAVR (hereafter CD/CDs).
Methods
Consecutive patients who underwent TAVR during December 2009–March 2021 at the Faculty of Medicine Siriraj Hospital, Mahidol University—Thailand’s largest national tertiary referral center—were enrolled. Patients with prior implantation of a cardiac device, periprocedural death, or unsuccessful procedure were excluded. Clinical and electrocardiographic data, preprocedural imaging, including membranous septum (MS) length, and procedural variables, including implantation depth (ID), were analyzed. CD was defined as new left or right bundle branch block, significant intraventricular conduction disturbance with QRS interval ≥ 120 ms, new high-grade atrioventricular block, or complete heart block. Multivariate binary logistic analysis and receiver operating characteristic (ROC) curve analysis were used to identify independent predictors and the optimal ∆MSID (difference between the MS length and ID) cutoff value, respectively.
Results
A total of 124 TAVR patients (mean age: 84.3 ± 6.3 years, 62.1% female) were included. The mean Society of Thoracic Surgeons score was 7.3%, and 85% of patients received a balloon expandable transcatheter heart valve. Thirty-five patients (28.2%) experienced a CD, and one-third of those required pacemaker implantation. The significant preprocedural and procedural factors identified from univariate analysis included intraventricular conduction delay, mitral annular calcification, MS length ≤ 6.43 mm, self-expanding device, small left ventricular cavity, and ID ≥ 6 mm. Multivariate analysis revealed MS length ≤ 6.43 mm (adjusted odds ratio [aOR] 9.54; 95% CI 2.56–35.47; p = 0.001) and ∆MSID < 0 mm (adjusted odds ratio [aOR] 10.77; 95% CI 2.86–40.62; p = < 0.001) to be independent predictors of CD. The optimal ∆MSID cutoff value for predicting conduction disturbances was less than 0 mm (area under the receiver operating characteristic curve [AuROC]: 0.896).
Conclusion
This study identified MS length ≤ 6.43 mm and ∆MSID < 0 mm as independent predictors of CDs. ∆MSID < 0 was the strongest and only modifiable predictor. Importantly, we expanded the CD criteria to cover all spectrum of TAVR-related conduction injury to lower the threshold of this sole modifiable risk. The optimal ∆MSID cutoff value was < 0 mm.
Trial registration: TCTR, TCTR20210818002. Registered 17 August 2021—Retrospectively registered, http://www.thaiclinicaltrials.org/show/TCTR 20210818002.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine
Reference35 articles.
1. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607. 2. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Williams M, Dewey T, Kapadia S, Babaliaros V, Thourani VH, Corso P, Pichard AD, Bavaria JE, Herrmann HC, Akin JJ, Anderson WN, Wang D, Pocock SJ. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–98. 3. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, Thourani VH, Tuzcu EM, Miller DC, Herrmann HC, Doshi D, Cohen DJ, Pichard AD, Kapadia S, Dewey T, Babaliaros V, Szeto WY, Williams MR, Kereiakes D, Zajarias A, Greason KL, Whisenant BK, Hodson RW, Moses JW, Trento A, Brown DL, Fearon WF, Pibarot P, Hahn RT, Jaber WA, Anderson WN, Alu MC, Webb JG. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609–20. 4. Sakiyalak P, Slisatkorn W, Pornratanarangsi S, Wongpraparut N, Jakrapanichakul D, Raksamani K, Prakanrattana U, Laksanabunsong P. Transcatheter aortic valve implantation (TAVI): first case in Thailand. J Med Assoc Thai. 2012;95:124–8. 5. Kungvivatana K, Wongpraparut N, Jakrapanichakul D, Chunhamaneewat N, Maneesai A, Chaitriraphan V, Sakiyalak P, Slisatkorn W, Sanphasitvong V, Vacharaksa K, Raksamani K, Phichaphop A, Towashiraporn K, Chanwanitkulchai R, Rasmeehiran P, Jamnongprasatporn S, Panchavinnin P, Chotinaiwattarakul C, Pongakasira R. Incidence and clinical outcomes of thrombocytopenia after transcatheter aortic valve replacement in thai patients. J Med Assoc Thai. 2021;104:1192–8.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|