PPFlow: Target-Aware Peptide Design with Torsional Flow Matching
Author:
Lin Haitao,Zhang Odin,Zhao Huifeng,Jiang Dejun,Wu Lirong,Liu Zicheng,Huang Yufei,Li Stan Z.
Abstract
AbstractTherapeutic peptides have proven to have great pharmaceutical value and potential in recent decades. However, methods of AI-assisted peptide drug discovery are not fully explored. To fill the gap, we propose a target-aware peptide design method called PPFlow, based on conditional flow matching on torus manifolds, to model the internal geometries of torsion angles for the peptide structure design. Besides, we establish a protein-peptide binding dataset namedPPBench2024to fill the void of massive data for the task of structure-based peptide drug design and to allow the training of deep learning methods. Extensive experiments show that PPFlowreaches state-of-the-art performance in tasks of peptide drug generation and optimization in comparison with baseline models, and can be generalized to other tasks including docking and side-chain packing.
Publisher
Cold Spring Harbor Laboratory
Reference69 articles.
1. Agrawal, P. , Singh, H. , Srivastava, H. K. , Singh, S. , Kishore, G. , and Raghava, G. P. Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinformatics, 19, 2019. 2. Alford, R. F. , Leaver-Fay, A. , Jeliazkov, J. R. , O’Meara, M. J. , DiMaio, F. , Park, H. , Shapovalov, M. V. , Renfrew, P. D. , Mulligan, V. K. , Kappel, K. , Labonte, J. W. , Pacella, M. S. , Bonneau, R. , Bradley, P. , Dunbrack, R. L. , Das, R. , Baker, D. , Kuhlman, B. , Kortemme, T. , and Gray, J. J. The rosetta all-atom energy function for macromolecular modeling and design. bioRxiv, 2017. 3. Austin, J. , Johnson, D. D. , Ho, J. , Tarlow, D. , and van den Berg, R. Structured denoising diffusion models in discrete state-spaces. In Beygelzimer, A. , Dauphin, Y. , Liang, P. , and Vaughan, J. W. (eds.), Advances in Neural Information Processing Systems, 2021. 4. Bose, A. J. , Akhound-Sadegh, T. , Fatras, K. , Huguet, G. , Rector-Brooks, J. , Liu, C.-H. , Nica, A. C. , Korablyov, M. , Bronstein, M. , and Tong, A. Se(3)-stochastic flow matching for protein backbone generation. ArXiv, abs/2310.02391, 2023. 5. Chen, R. T. Q. and Lipman, Y. Riemannian flow matching on general geometries. ArXiv, abs/2302.03660, 2023.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|