Cellular mechanotransduction of human osteoblasts in microgravity
Author:
Wubshet Nadab H.ORCID, Cai GraceORCID, Chen Samuel J.ORCID, Sullivan MollyORCID, Reeves MarkORCID, Mays DavidORCID, Harrison Morgan, Varnado PaulORCID, Yang BenjaminORCID, Arreguin-Martinez Esmeralda, Qu Yunjia, Lin Shan-Shan, Duran Pamela, Aguilar CarlosORCID, Giza ShelbyORCID, Clements TwymanORCID, Liu Allen P.ORCID
Abstract
AbstractAstronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, 4 microfluidic chips capable of measuring single-cell mechanics of hFOBs via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. Our analysis revealed slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell behavior and signaling in space.
Publisher
Cold Spring Harbor Laboratory
Reference45 articles.
1. Historical Perspectives: Physiology in microgravity;J Appl Physiol,2000 2. Garrett-Bakelman, F. E. , Darshi, M. , Green, S. J. , Gur, R. C. , Lin, L. , Macias, B. R. , McKenna, M. J. , Meydan, C. , Mishra, T. , Nasrini, J. , Piening, B. D. , Rizzardi, L. F. , Sharma, K. , Siamwala, J. H. , Taylor, L. , Vitaterna, M. H. , Afkarian, M. , Afshinnekoo, E. , Ahadi, S. , Ambati, A. , Arya, M. , Bezdan, D. , Callahan, C. M. , Chen, S. , Choi, A. M. K. , Chlipala, G. E. , Contrepois, K. , Covington, M. , Crucian, B. E. , De Vivo, I. , Dinges, D. F. , Ebert, D. J. , Feinberg, J. I. , Gandara, J. A. , George, K. A. , Goutsias, J. , Grills, G. S. , Hargens, A. R. , Heer, M. , Hillary, R. P. , Hoofnagle, A. N. , Hook, V. Y. H. , Jenkinson, G. , Jiang, P. , Keshavarzian, A. , Laurie, S. S. , Lee-McMullen, B. , Lumpkins, S. B. , MacKay, M. , Maienschein-Cline, M. G. , Melnick, A. M. , Moore, T. M. , Nakahira, K. , Patel, H. H. , Pietrzyk, R. , Rao, V. , Saito, R. , Salins, D. N. , Schilling, J. M. , Sears, D. D. , Sheridan, C. K. , Stenger, M. B. , Tryggvadottir, R. , Urban, A. E. , Vaisar, T. , Van Espen, B. , Zhang, J. , Ziegler, M. G. , Zwart, S. R. , Charles, J. B. , Kundrot, C. E. , Scott, G. B. I. , Bailey, S. M. , Basner, M. , Feinberg, A. P. , Lee, S. M. C. , Mason, C. E. , Mignot, E. , Rana, B. K. , Smith, S. M. , Snyder, M. P. & Turek, F. W . The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science (1979) 364, (2019). 3. Bone Resorption by Osteoclasts;Science (1979),2000 4. Mechanosensing Biology 5. BMP Signaling Is Required for RUNX2-Dependent Induction of the Osteoblast Phenotype
|
|