Predicting fine-scale distributions and emergent spatiotemporal patterns from temporally dynamic step selection simulations

Author:

Forrest Scott WORCID,Pagendam DanORCID,Bode MichaelORCID,Drovandi ChristopherORCID,Potts Jonathan RORCID,Perry JustinORCID,Vanderduys Eric,Hoskins Andrew JORCID

Abstract

AbstractUnderstanding and predicting animal movement is fundamental to ecology and conservation management. Models that estimate and then predict animal movement and habitat selection parameters underpin diverse conservation applications, from mitigating invasive species spread to enhancing landscape connectivity. However, many predictive models overlook fine-scale temporal dynamics within their predictions, despite animals often displaying fine-scale behavioural variability that might significantly alter their movement, habitat selection and distribution over time. Incorporating fine-scale temporal dynamics, such as circadian rhythms, within predictive models might reduce the averaging out of such behaviours, thereby enhancing our ability to make predictions in both the short and long term. We tested whether the inclusion of fine-scale temporal dynamics improved both fine-scale (hourly) and long-term (seasonal) spatial predictions for a significant invasive species of Northern Australia, the water buffalo (Bubalus bubalis). Water buffalo require intensive management actions over vast, remote areas and display distinct circadian rhythms linked to habitat use. To inform management operations we generated hourly and dry season prediction maps by simulating trajectories from static and temporally dynamic step selection functions (SSFs) that were fitted to the GPS data of 13 water buffalo. We found that simulations generated from temporally dynamic models replicated the buffalo’s crepuscular movement patterns and dynamic habitat selection, resulting in more informative and accurate hourly predictions. Additionally, when the simulations were aggregated into long-term predictions, the dynamic models were more accurate and better able to highlight areas of concentrated habitat use that might indicate high-risk areas for environmental damage. Our findings emphasise the importance of incorporating fine-scale temporal dynamics in predictive models for species with clear dynamic behavioural patterns. By integrating temporally dynamic processes into animal movement trajectories, we demonstrate an approach that can enhance conservation management strategies and deepen our understanding of ecological and behavioural patterns across multiple timescales.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3