Genome-wide prediction of bacterial effectors across six secretion system types using a feature-based supervised learning framework

Author:

Dhroso Andi,Eidson Samantha,Korkin Dmitry

Abstract

AbstractGram-negative bacteria are responsible for hundreds of millions infections worldwide, including the emerging hospital-acquired infections and neglected tropical diseases in the third-world countries. Finding a fast and cheap way to understand the molecular mechanisms behind the bacterial infections is critical for efficient diagnostics and treatment. An important step towards understanding these mechanisms is discovering bacterial effectors, the proteins secreted into the host through one of the six common secretion system types. Unfortunately, current effector prediction methods are designed to specifically target one of three secretion systems, and no accurate “secretion system-agnostic” method is available.Here, we present PREFFECTOR, a computational feature-based approach to discover effectors in Gram-negative bacteria without prior knowledge on bacterial secretion system(s) or cryptic secretion signals. Our approach was first evaluated using several assessment protocols on a manually curated, balanced dataset of experimentally determined effectors across all six secretion systems as well as non-effector proteins. The evaluation revealed high accuracy of the top performing classifiers in PREFFECTOR, with the small false positive discovery rate across all six secretion systems. Our method was also applied to four bacteria that had limited knowledge on virulence factors or secreted effectors. PREFFECTOR web-server is freely available at: http://korkinlab.org/preffector.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3