FST and kinship for arbitrary population structures I: Generalized definitions

Author:

Ochoa AlejandroORCID,Storey John D.ORCID

Abstract

AbstractFST is a fundamental measure of genetic differentiation and population structure, currently defined for subdivided populations. FST in practice typically assumes independent, non-overlapping subpopulations, which all split simultaneously from their last common ancestral population so that genetic drift in each subpopulation is probabilistically independent of the other subpopulations. We introduce a generalized FST definition for arbitrary population structures, where individuals may be related in arbitrary ways, allowing for arbitrary probabilistic dependence among individuals. Our definitions are built on identity-by-descent (IBD) probabilities that relate individuals through inbreeding and kinship coefficients. We generalize FST as the mean inbreeding coefficient of the individuals’ local populations relative to their last common ancestral population. We show that the generalized definition agrees with Wright’s original and the independent subpopulation definitions as special cases. We define a novel coancestry model based on “individual-specific allele frequencies” and prove that its parameters correspond to probabilistic kinship coefficients. Lastly, we extend the Pritchard-Stephens-Donnelly admixture model in the context of our coancestry model and calculate its FST. To motivate this work, we include a summary of analyses we have carried out in follow-up papers, where our new approach has been applied to simulations and global human data, showcasing the complexity of human population structure, demonstrating our success in estimating kinship and FST, and the shortcomings of existing approaches. The probabilistic framework we introduce here provides a theoretical foundation that extends FST in terms of inbreeding and kinship coefficients to arbitrary population structures, paving the way for new estimators and novel analyses.Note: This article is Part I of two-part manuscripts. We refer to these in the text as Part I and Part II, respectively.Part I: Alejandro Ochoa and John D. Storey. “FST and kinship for arbitrary population structures I: Generalized definitions”. bioRxiv (10.1101/083915) (2019). https://doi.org/10.1101/083915. First published 2016-10-27.Part II: Alejandro Ochoa and John D. Storey. “FST and kinship for arbitrary population structures II: Method of moments estimators”. bioRxiv (10.1101/083923) (2019). https://doi.org/10.1101/083923. First published 2016-10-27.

Publisher

Cold Spring Harbor Laboratory

Reference108 articles.

1. FST and kinship for arbitrary population structures I: Generalized definitions

2. FST and kinship for arbitrary population structures II: Method-of-moments estimators

3. Coefficients of Inbreeding and Relationship

4. Douglas S. Falconer and Trudy F. C. Mackay . Introduction to Quantitative Genetics. 4 edition. Harlow: Pearson, 1996. 480 pp.

5. Gustave Malécot . Mathématiques de l’hérédité. Masson et Cie, 1948.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3