Adaptive divergence in shoot gravitropism creates hybrid sterility in an Australian wildflower

Author:

Wilkinson Melanie J.ORCID,Roda Federico,Walter Greg M.ORCID,James Maddie E.,Nipper Rick,Walsh Jessica,Allen Scott L.,North Henry L.,Beveridge Christine A.,Ortiz-Barrientos DanielORCID

Abstract

AbstractNatural selection is a significant driver of speciation. Yet it remains largely unknown whether local adaptation can drive speciation through the evolution of hybrid sterility between populations. Here, we show that adaptive divergence in shoot gravitropism, the ability of a plant’s shoot to bend upwards in response to the downward pull of gravity, contributes to the evolution of hybrid sterility in an Australian wildflower, Senecio lautus. We find that shoot gravitropism has evolved multiple times in association with plant height between adjacent populations inhabiting contrasting environments, suggesting that these traits have evolved by natural selection. We directly tested this prediction using a hybrid population subjected to eight rounds of recombination and three rounds of selection in the field. It revealed that shoot gravitropism responds to natural selection in the expected direction of the locally adapted population. This provided an ideal platform to test whether genetic differences in gravitropism contribute to hybrid sterility in S. lautus. Using this advanced hybrid population, we discovered that crossing individuals with extreme differences in gravitropism reduce their ability to produce seed by 21%, providing strong evidence that this adaptive trait is genetically correlated with hybrid sterility. Our results suggest that natural selection can drive the evolution of locally adaptive traits that also create hybrid sterility, thus indicating an evolutionary connection between local adaptation and the origin of new species.Significance statementNew species originate as populations become reproductively isolated from one another. Despite recent progress in uncovering the genetic basis of reproductive isolation, it remains unclear whether intrinsic reproductive barriers, such as hybrid sterility, evolve as a by-product of local adaptation to contrasting environments or evolve through non-ecological processes, such as meiotic drive. Here, we show that differences in a plant’s response to the pull of gravity have repeatedly evolved amongst coastal populations of an Australian wildflower, thus implicating a role of natural selection in their evolution. We found a strong genetic correlation between variation in this adaptive trait and hybrid sterility, suggesting that intrinsic reproductive barriers contribute to the origin of new species as populations adapt to heterogeneous environments.

Publisher

Cold Spring Harbor Laboratory

Reference80 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3