Feeding behavior of Aplysia: A model system for comparing cellular mechanisms of classical and operant conditioning

Author:

Baxter Douglas A.,Byrne John H.

Abstract

Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural circuitry that mediates the behavior is well characterized and amenable to detailed cellular analyses, substantial progress has been made toward a comparative analysis of the cellular mechanisms underlying these two forms of associative learning. Both forms of associative learning use the same reinforcement pathway (the esophageal nerve, En) and the same reinforcement transmitter (dopamine, DA). In addition, at least one cellular locus of plasticity (cell B51) is modified by both forms of associative learning. However, the two forms of associative learning have opposite effects on B51. Classical conditioning decreases the excitability of B51, whereas operant conditioning increases the excitability of B51. Thus, the approach of using two forms of associative learning to modify a single behavior, which is mediated by an analytically tractable neural circuit, is revealing similarities and differences in the mechanisms that underlie classical and operant conditioning.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3