RootNav 2.0: Deep Learning for Automatic Navigation of Complex Plant Root Architectures

Author:

Yasrab RobailORCID,Atkinson Jonathan AORCID,Wells Darren MORCID,French Andrew PORCID,Pridmore Tony PORCID,Pound Michael PORCID

Abstract

AbstractWe present a new image analysis approach that provides fully-automatic extraction of complex root system architectures from a range of plant species in varied imaging setups. Driven by modern deep-learning approaches,RootNav 2.0replaces previously manual and semi-automatic feature extraction with an extremely deep multi-task Convolutional Neural Network architecture. The network has been designed to explicitly combine local pixel information with global scene information in order to accurately segment small root features across high-resolution images. In addition, the network simultaneously locates seeds, and first and second order root tips to drive a search algorithm seeking optimal paths throughout the image, extracting accurate architectures without user interaction. The proposed method is evaluated on images of wheat (Triticum aestivumL.) from a seedling assay. The results are compared with semi-automatic analysis via the originalRootNavtool, demonstrating comparable accuracy, with a 10-fold increase in speed. We then demonstrate the ability of the network to adapt to different plant species via transfer learning, offering similar accuracy when transferred to anArabidopsis thalianaplate assay. We transfer for a final time to images ofBrassica napusfrom a hydroponic assay, and still demonstrate good accuracy despite many fewer training images. The tool outputs root architectures in the widely accepted RSML standard, for which numerous analysis packages exist (http://rootsystemml.github.io/), as well as segmentation masks compatible with other automated measurement tools.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3