Latent Space Phenotyping: Automatic Image-Based Phenotyping for Treatment Studies

Author:

Ubbens Jordan1ORCID,Cieslak Mikolaj2ORCID,Prusinkiewicz Przemyslaw2,Parkin Isobel3ORCID,Ebersbach Jana3ORCID,Stavness Ian1ORCID

Affiliation:

1. Department of Computer Science, University of Saskatchewan, Canada

2. Department of Computer Science, University of Calgary, Canada

3. Agriculture and Agri-Food Canada, Saskatoon, SK, Canada

Abstract

Association mapping studies have enabled researchers to identify candidate loci for many important environmental tolerance factors, including agronomically relevant tolerance traits in plants. However, traditional genome-by-environment studies such as these require a phenotyping pipeline which is capable of accurately measuring stress responses, typically in an automated high-throughput context using image processing. In this work, we present Latent Space Phenotyping (LSP), a novel phenotyping method which is able to automatically detect and quantify response-to-treatment directly from images. We demonstrate example applications using data from an interspecific cross of the model C4 grass Setaria, a diversity panel of sorghum (S. bicolor), and the founder panel for a nested association mapping population of canola (Brassica napus L.). Using two synthetically generated image datasets, we then show that LSP is able to successfully recover the simulated QTL in both simple and complex synthetic imagery. We propose LSP as an alternative to traditional image analysis methods for phenotyping, enabling the phenotyping of arbitrary and potentially complex response traits without the need for engineering-complicated image-processing pipelines.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Literature and Literary Theory,Music,Agronomy and Crop Science,Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3