Brain hierarchy score: Which deep neural networks are hierarchically brain-like?

Author:

Nonaka SomaORCID,Majima KeiORCID,Aoki Shuntaro C.ORCID,Kamitani YukiyasuORCID

Abstract

SummaryAchievement of human-level image recognition by deep neural networks (DNNs) has spurred interest in whether and how DNNs are brain-like. Both DNNs and the visual cortex perform hierarchical processing, and correspondence has been shown between hierarchical visual areas and DNN layers in representing visual features. Here, we propose the brain hierarchy (BH) score as a metric to quantify the degree of hierarchical correspondence based on the decoding of individual DNN unit activations from human brain activity. We find that BH scores for 29 pretrained DNNs with varying architectures are negatively correlated with image recognition performance, indicating that recently developed high-performance DNNs are not necessarily brain-like. Experimental manipulations of DNN models suggest that relatively simple feedforward architecture with broad spatial integration is critical to brain-like hierarchy. Our method provides new ways for designing DNNs and understanding the brain in consideration of their representational homology.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. Neural population control via deep image synthesis

2. Cadena, S.A. , Sinz, F.H. , Muhammad, T. , Froudarakis, E. , Cobos, E. , Walker, E.Y. , Reimer, J. , Bethge, M. , Tolias, A.S. , and Ecker, A.S. (2019). How well do deep neural networks trained on object recognition characterize the mouse visual system? 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada. https://openreview.net/forum?id=rkxcXmtUUS

3. Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition

4. Spatial coding and invariance in object-selective cortex

5. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3