Attentionally modulated subjective images reconstructed from brain activity

Author:

Horikawa TomoyasuORCID,Kamitani YukiyasuORCID

Abstract

SummaryVisual image reconstruction from brain activity produces images whose features are consistent with the neural representations in the visual cortex given arbitrary visual instances [1–3], presumably reflecting the person’s visual experience. Previous reconstruction studies have been concerned either with how stimulus images are faithfully reconstructed or with whether mentally imagined contents can be reconstructed in the absence of external stimuli. However, many lines of vision research have demonstrated that even stimulus perception is shaped both by stimulus-induced processes and top-down processes. In particular, attention (or the lack of it) is known to profoundly affect visual experience [4–8] and brain activity [9–21]. Here, to investigate how top-down attention impacts the neural representation of visual images and the reconstructions, we use a state-of-the-art method (deep image reconstruction [3]) to reconstruct visual images from fMRI activity measured while subjects attend to one of two images superimposed with equally weighted contrasts. Deep image reconstruction exploits the hierarchical correspondence between the brain and a deep neural network (DNN) to translate (decode) brain activity into DNN features of multiple layers, and then create images that are consistent with the decoded DNN features [3, 22, 23]. Using the deep image reconstruction model trained on fMRI responses to single natural images, we decode brain activity during the attention trials. Behavioral evaluations show that the reconstructions resemble the attended rather than the unattended images. The reconstructions can be modeled by superimposed images with contrasts biased to the attended one, which are comparable to the appearance of the stimuli under attention measured in a separate session. Attentional modulations are found in a broad range of hierarchical visual representations and mirror the brain–DNN correspondence. Our results demonstrate that top-down attention counters stimulus-induced responses and modulate neural representations to render reconstructions in accordance with subjective appearance. The reconstructions appear to reflect the content of visual experience and volitional control, opening a new possibility of brain-based communication and creation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3