Reactivity-based screening for citrulline-containing natural products reveals a family of bacterial peptidyl arginine deiminases

Author:

Harris Lonnie A.ORCID,Saint-Vincent Patricia M. B.ORCID,Guo XiaoruiORCID,Hudson Graham A.ORCID,Mitchell Douglas A.ORCID

Abstract

ABSTRACTRibosomally synthesized and post-translationally modified peptides (RiPPs) are a family of natural products defined by a genetically encoded precursor peptide that is tailored by associated biosynthetic enzymes to form the mature product. Lasso peptides are a class of RiPP defined by an isopeptide linkage between the N-terminal amine and an internal Asp/Glu residue with the C-terminus threaded through the macrocycle. This unique lariat topology, which provides considerable stability towards heat and proteases, has stimulated interest in lasso peptides as potential therapeutics. Post-translational modifications beyond the class-defining, threaded macrolactam have been reported, including one example of arginine deimination to yield citrulline. Although a citrulline-containing lasso peptide (i.e., citrulassin) was serendipitously discovered during a genome-guided campaign, the gene(s) responsible for arginine deimination has remained unknown. Herein we describe the use of reactivity-based screening to discriminate bacteria that produce arginine-versus citrulline-bearing citrulassins, culminating in the discovery and characterization of 11 new lasso peptide variants. Phylogenetic profiling identified a distally encoded peptidyl arginine deiminase (PAD) gene ubiquitous to the citrulline-containing variants. Absence of this gene correlated strongly with citrulassin variants only containing arginine (des-citrulassin). Heterologous expression of the PAD in a non-citrulassin producer resulted in the production of the deiminated analog, confirming PAD involvement in arginine deimination. The family of PADs were then bioinformatically surveyed for a deeper understanding of its genomic context and potential role in post-translational modification of RiPPs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3