Sphingobium sp. SYK-6 syringate O-demethylase gene is regulated by DesX, unlike other vanillate and syringate catabolic genes regulated by DesR

Author:

Araki Takuma,Tanatani Kenta,Kamimura Naofumi,Otsuka Yuichiro,Yamaguchi Muneyoshi,Nakamura Masaya,Masai EijiORCID

Abstract

ABSTRACTSyringate and vanillate are the major metabolites of lignin biodegradation. In Sphingobium sp. strain SYK-6, syringate is O demethylated to gallate by consecutive reactions catalyzed by DesA and LigM, and vanillate is O demethylated to protocatechuate by a reaction catalyzed by LigM. The gallate ring is cleaved by DesB, and protocatechuate is catabolized via the protocatechuate 4,5-cleavage pathway. The transcriptions of desA, ligM, and desB are induced by syringate and vanillate, while that of ligM and desB are negatively regulated by the MarR-type transcriptional regulator DesR, which is not involved in desA regulation. Here we clarified the regulatory system for desA transcription by analyzing the IclR-type transcriptional regulator desX, located downstream of desA. Quantitative reverse transcription (RT)-PCR analyses of a desX mutant indicates that the transcription of desA was negatively regulated by DesX. In contrast, DesX was not involved in the regulation of ligM and desB. The ferulate catabolic genes (ferBA) under the control of a MarR-type transcriptional regulator FerC are located upstream of desA. RT-PCR analyses suggest that the ferB-ferA-SLG_25010-desA gene cluster consists of the ferBA operon and the SLG_25010-desA operon. Promoter assays reveal that a syringate- and vanillate-inducible promoter is located upstream of SLG_25010. Purified DesX bound to this promoter region, which overlaps with an 18-bp-inverted repeat sequence that appears to be essential for the DNA binding of DesX. Syringate and vanillate inhibited the DNA binding of DesX, indicating that these compounds are effector molecules of DesX.IMPORTANCESyringate is a major degradation product in the microbial and chemical degradation of syringyl lignin. Along with other low-molecular-weight aromatic compounds, syringate is produced by chemical lignin depolymerization. Converting this mixture into value-added chemicals using bacterial metabolism (i.e., biological funneling) is a promising option for lignin valorization. To construct an efficient microbial lignin conversion system, it is necessary to identify and characterize the genes involved in the uptake and catabolism of lignin-derived aromatic compounds and elucidate their transcriptional regulation. In this study, we found that the transcription of desA, encoding syringate O-demethylase in SYK-6, is regulated by an IclR-type of transcriptional regulator, DesX. The findings of this study, combined with our previous results on desR (a MarR transcriptional regulator that controls the transcription of ligM and desB), provide an overall picture of the transcriptional regulatory systems for syringate and vanillate catabolism in SYK-6.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3