Patient-tailored design of AML cell subpopulation-selective drug combinations

Author:

Ianevski Aleksandr,Lahtela Jenni,Javarappa Komal K.,Sergeev Philipp,Ghimire Bishwa R.,Gautam Prson,Vähä-Koskela Markus,Turunen Laura,Linnavirta Nora,Kuusanmäki Heikki,Kontro Mika,Porkka Kimmo,Heckman Caroline A.,Mattila Pirkko,Wennerberg Krister,Giri Anil K.,Aittokallio Tero

Abstract

AbstractThe extensive primary and secondary drug resistance in acute myeloid leukemia (AML) requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to optimally target disease-driving AML cell subpopulations. However, the large number of AML-relevant drug combinations makes the testing impossible in scarce primary patient cells. This combinatorial problem is further exacerbated by the translational challenge of how to design such personalized and selective drug combinations that do not only show synergistic effect in overall AML cell killing but also result in minimal toxic side effects on non-malignant cells. To solve these challenges, we implemented a systematic computational-experimental approach for identifying potential drug combinations that have a desired synergy-efficacy-toxicity balance. Our mechanism-agnostic approach combines single-cell RNA-sequencing (scRNA-seq) with ex vivo single-agent viability testing in primary patient cells. The data integration and predictive modelling are carried out at a single-cell resolution by means of a machine learning model that makes use of compound-target interaction networks to narrow down the massive search space of potentially effective drug combinations. When applied to two diagnostic and two refractory AML patient cases, each having a different genetic background, our integrated approach predicted a number of patient-specific combinations that were shown to result not only in synergistic cancer cell inhibition but were also capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Overall, 53% of the 59 predicted combinations were experimentally confirmed to show synergy, and 83% were non-antagonistic, as validated with viability assays, which is a significant improvement over the success rate of randomly guessing a synergistic drug combination (5%). Importantly, 67% of the predicted combinations showed low toxicity to non-malignant cells, as validated with flow-based population assays, suggesting their selective killing of AML cell populations. Our data-driven approach provides an unbiased means for systematic prioritization of patient-specific drug combinations that selectively inhibit AML cells and avoid co-inhibition of non-malignant cells, thereby increasing their likelihood for clinical translation. The approach uses only a limited number of patient primary cells, and it is widely applicable to hematological cancers that are accessible for scRNA-seq profiling and ex vivo compound testing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3