Dynamic control over feedback regulation identifies pyruvate-ferredoxin oxidoreductase as a central metabolic enzyme in stationary phase E. coli

Author:

Li Shuai,Ye Zhixia,Lebeau Juliana,Moreb Eirik A.,Lynch Michael D.ORCID

Abstract

AbstractWe demonstrate the use of two-stage dynamic metabolic control to manipulate feedback regulation in central metabolism and improve stationary phase biosynthesis in engineered E. coli. Specifically, we report the impact of dynamic control over two enzymes: citrate synthase, and glucose-6-phosphate dehydrogenase, on stationary phase fluxes. Firstly, reduced citrate synthase levels lead to a reduction in α-ketoglutarate, which is an inhibitor of sugar transport, resulting in increased stationary phase glucose uptake and glycolytic fluxes. Reduced glucose-6-phosphate dehydrogenase activity activates the SoxRS regulon and expression of pyruvate-ferredoxin oxidoreductase, which is in turn responsible for large increases in acetyl-CoA production. The combined reduction in citrate synthase and glucose-6-phosphate dehydrogenase, leads to greatly enhanced stationary phase metabolism and the improved production of citramalic acid enabling titers of 126±7g/L. These results identify pyruvate oxidation via the pyruvate-ferredoxin oxidoreductase as a “central” metabolic pathway in stationary phase E. coli, which coupled with ferredoxin reductase comprise a pathway whose physiologic role is maintaining NADPH levels.HighlightsDynamic reduction in α-keto-glutarate pools alleviate inhibition of PTS dependent transport improving stationary phase sugar uptake.Dynamic reduction in glucose-6-phosphate dehydrogenase activates pyruvate flavodoxin/ferredoxin oxidoreductase and improves stationary acetyl-CoA flux.Pyruvate flavodoxin/ferredoxin oxidoreductase is responsible for large stationary phase acetyl-CoA fluxes under aerobic conditions.Production of citramalate to titers 126 ± 7g/L at > 90 % of theoretical yield.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3