Reversal of Epigenetic Age with Diet and Lifestyle in a Pilot Randomized Clinical Trial

Author:

Fitzgerald Kara N.,Hodges RomillyORCID,Hanes Douglas,Stack Emily,Cheishvili DavidORCID,Szyf MosheORCID,Henkel Janine,Twedt Melissa W.,Giannopoulou Despina,Herdell Josette,Logan Sally,Bradley Ryan

Abstract

SUMMARYManipulations to set back biological age and extend lifespan in animal models are well established, and translation to humans has begun. The length of human life makes it impractical to evaluate results by plotting mortality curves, so surrogate markers of age have been suggested and, at present, the best established surrogates are DNA methylation clocks. Herein we report on a randomized, controlled clinical trial designed to be a first step in evaluating the effect of a diet and lifestyle intervention on biological age. Compared to participants in the control group (n=20), participants in the treatment group tested an average 3.23 years younger at the end of the eight-week program according to the Horvath DNAmAge clock (p=0.018). Those in the treatment group (n=18) tested an average 1.96 years younger at the end of the program compared to the same individuals at the beginning with a strong trend towards significance (p=0.066 for within group change). This is the first such trial to demonstrate a potential reversal of biological age. In this study, the intervention was confined to diet and lifestyle changes previously identified as safe to use. The prescribed program included multiple components with documented mechanistic activity on epigenetic pathways, including moderate exercise, breathing exercises for stress, and a diet rich in methyl donor nutrients and polyphenols.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. Towards a unified mechanistic theory of aging;Experimental gerontology,2019

2. Epigenomics and the regulation of aging

3. Epigenetic aging and immune senescence in women with insomnia symptoms: findings from the Women’s Health Initiative Study;Biological psychiatry,2017

4. A pilot prospective study of sleep patterns and DNA methylation-characterized epigenetic aging in young adults;BMC research notes,2019

5. DNA methylation-based measures of biological age: meta-analysis predicting time to death

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3