Deep learning and computer vision will transform entomology

Author:

Høye Toke T.ORCID,Ärje Johanna,Bjerge Kim,Hansen Oskar L. P.,Iosifidis Alexandros,Leese Florian,Mann Hjalte M. R.,Meissner Kristian,Melvad Claus,Raitoharju Jenni

Abstract

ABSTRACTMost animal species on Earth are insects, and recent reports suggest that their abundance is in drastic decline. Although these reports come from a wide range of insect taxa and regions, the evidence to assess the extent of the phenomenon is still sparse. Insect populations are challenging to study and most monitoring methods are labour intensive and inefficient. Advances in computer vision and deep learning provide potential new solutions to this global challenge. Cameras and other sensors that can effectively, continuously, and non-invasively perform entomological observations throughout diurnal and seasonal cycles. The physical appearance of specimens can also be captured by automated imaging in the lab. When trained on these data, deep learning models can provide estimates of insect abundance, biomass, and diversity. Further, deep learning models can quantify variation in phenotypic traits, behaviour, and interactions. Here, we connect recent developments in deep learning and computer vision to the urgent demand for more cost-efficient monitoring of insects and other invertebrates. We present examples of sensor-based monitoring of insects. We show how deep learning tools can be applied to the big data outputs to derive ecological information and discuss the challenges that lie ahead for the implementation of such solutions in entomology. We identify four focal areas, which will facilitate this transformation: 1) Validation of image-based taxonomic identification, 2) generation of sufficient training data, 3) development of public, curated reference databases, and 4) solutions to integrate deep learning and molecular tools.Significance statementInsect populations are challenging to study, but computer vision and deep learning provide opportunities for continuous and non-invasive monitoring of biodiversity around the clock and over entire seasons. These tools can also facilitate the processing of samples in a laboratory setting. Automated imaging in particular can provide an effective way of identifying and counting specimens to measure abundance. We present examples of sensors and devices of relevance to entomology and show how deep learning tools can convert the big data streams into ecological information. We discuss the challenges that lie ahead and identify four focal areas to make deep learning and computer vision game changers for entomology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3