Genome scans of dog behavior implicate a gene network underlying psychopathology in mammals, including humans

Author:

Zapata IsainORCID,Hecht Erin E.ORCID,Serpell James A.ORCID,Alvarez Carlos E.ORCID

Abstract

AbstractGenetic studies show a general factor associated with all human psychopathology and strongly correlated with personality and intelligence, but its basis is unknown. We performed genome scans of 17 normal and problem behaviors in three multi-breed dog cohorts. 21 of 90 mapped loci were supported for the same, or a related, trait in a second cohort. Several of those loci were also associated with brain structure differences across breeds; and six of the respective top-candidate genes are also associated with human brain structure and function. More broadly, the geneset of canine behavioral scans is supported by enrichment for genes mapped for human behavior, personality, cognition, psychopathology and brain structure. The biology implicated includes, neurogenesis, axon guidance, angiogenesis, brain structure, alternative splicing, disease association, Hox-family transcription factors, and subiculum expression. Because body size and behavior are correlated in dogs, we isolated the effect of body size in the dog mapping and in the comparative human UK Biobank analyses. Our dog findings are consistent with pleiotropy of diverse brain traits with energy metabolism and growth, and suggest behavioral variations often affect neurogenesis. There is support for such pleiotropy in humans and well-powered genetic studies of human psychiatric traits consistently implicate neurogenesis. We propose a genetic network which underlies neuron birth and development throughout life is associated with evolutionary adaptation of behavior and the general psychopathology factor. This understanding has implications for genetic and environmental contributions to psychiatric disease. We discuss how canine translational models can further accelerate the study of psychopathology.Author summaryWe genetically mapped diverse normal and problem behaviors in dogs. The well-established approach we used is ideally suited for finding variation that is common across dog breeds and for pin-pointing the most likely gene candidates. Our analysis of the genes implicated at 90 genome regions shows they are enriched for i) genes mapped for diverse brain functions and pathologies in humans; ii) genes involved in brain development throughout life; and iii) footprints of evolution in dogs, humans and other animals. We propose that is consistent with evolutionary conservation of the general genetic factor of mental health in humans, which is correlated with personality and intelligence. The implications are that this super-network of genes is preferentially targeted by evolutionary adaptation for behavior and that its dysregulation increases risk of mental health disorders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3