Machine learning prediction and classification of behavioral selection in a canine olfactory detection program

Author:

Eyre Alexander W.,Zapata Isain,Hare Elizabeth,Serpell James A.,Otto Cynthia M.,Alvarez Carlos E.

Abstract

AbstractThere is growing interest in canine behavioral research specifically for working dogs. Here we take advantage of a dataset of a Transportation Safety Administration olfactory detection cohort of 628 Labrador Retrievers to perform Machine Learning (ML) prediction and classification studies of behavioral traits and environmental effects. Data were available for four time points over a 12 month foster period after which dogs were accepted into a training program or eliminated. Three supervised ML algorithms had robust performance in correctly predicting which dogs would be accepted into the training program, but poor performance in distinguishing those that were eliminated (~ 25% of the cohort). The 12 month testing time point yielded the best ability to distinguish accepted and eliminated dogs (AUC = 0.68). Classification studies using Principal Components Analysis and Recursive Feature Elimination using Cross-Validation revealed the importance of olfaction and possession-related traits for an airport terminal search and retrieve test, and possession, confidence, and initiative traits for an environmental test. Our findings suggest which tests, environments, behavioral traits, and time course are most important for olfactory detection dog selection. We discuss how this approach can guide further research that encompasses cognitive and emotional, and social and environmental effects.

Funder

Department of Homeland Security Science and Technology Directorate

American Kennel Club Canine Health Foundation

Scottish Deerhound Club of America

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3