Prioritizing putative influential genes in early life cardiovascular disease susceptibility by applying tissue-specific Mendelian randomization

Author:

Taylor Kurt,Davey Smith George,Relton Caroline L,Gaunt Tom R,Richardson Tom G

Abstract

AbstractBackgroundThe extent to which changes in gene expression can influence cardiovascular disease risk across different tissue types has not yet been systematically explored. We have developed an analytical framework that integrates tissue-specific gene expression, Mendelian randomization and multiple-trait colocalization to develop functional mechanistic insight into the causal pathway from genetic variant to complex trait.MethodsWe undertook a transcriptome-wide association study in a population of young individuals to uncover genetic variants associated with both nearby gene expression and cardiovascular traits. Two-sample Mendelian randomization was then applied using large-scale datasets to investigate whether changes in gene expression within certain tissue types may influence cardiovascular trait variation. We subsequently performed Bayesian multiple-trait colocalization to further interrogate findings and also gain insight into whether DNA methylation, as well as gene expression, may play a role in disease susceptibility.ResultsEight genetic loci were associated with changes in gene expression and early life measures of cardiovascular function. Our Mendelian randomization analysis provided evidence of tissue-specific effects at multiple loci, of which the effects at theADCY3andFADS1loci for body mass index and cholesterol respectively were particularly insightful. Multiple trait colocalization uncovered evidence which suggested that changes in DNA methylation at the promoter region upstream ofFADS1/TMEM258may also play a role in cardiovascular trait variation along with gene expression. Furthermore, colocalization analyses were able to uncover evidence of tissue-specificity, most prominantly betweenSORT1expression in liver tissue and cholesterol levels.ConclusionsDisease susceptibility can be influenced by differential changes in tissue-specific gene expression and DNA methylation. Our analytical framework should prove valuable in elucidating mechanisms in disease, as well as helping prioritize putative causal genes at associated loci where multiple nearby genes may be co-regulated. Future studies which continue to uncover quantitative trait loci for molecular traits across various tissue and cell typse will further improve our capability to understand and prevent disease.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3