Integrating Quality of Life and Survival Outcomes Cardiovascular Clinical Trials: Results from the PARTNER Trial

Author:

Spertus Jacob V.,Hatfield Laura A.ORCID,Cohen David J.,Arnold Suzanne V.,Ho Martin,Jones Philip G.,Leon Martin,Zuckerman Bram,Spertus John A.

Abstract

ABSTRACTBackgroundSurvival and health status (e.g., symptoms and quality of life) are key outcomes in clinical trials of heart failure treatment. However, health status can only be recorded on survivors, potentially biasing treatment effect estimates when there is differential survival across treatment groups. Joint modeling of survival and health status can address this bias.Methods and ResultsWe analyzed patient-level data from the PARTNER 1B trial of transcatheter aortic valve replacement (TAVR) versus standard care. Health status was quantified with the Kansas City Cardiomyopathy Questionnaire (KCCQ) at randomization, 1, 6, and 12 months. We compared hazard ratios for survival and mean differences in KCCQ scores at 12 months using several models: the original growth curve model for KCCQ scores (ignoring death), separate Bayesian models for survival and KCCQ scores, and a Bayesian joint longitudinal-survival model fit to either 12 or 30 months of survival follow-up. The benefit of TAVR on 12-month KCCQ scores was greatest in the joint model fit to all survival data (mean difference = 33.7 points; 95% CrI: 24.2, 42.4), followed by the joint model fit to 12 months of survival follow-up (32.3 points; 95% CrI: 22.5, 41.5), a Bayesian model without integrating death (30.4 points; 95% CrI: 21.4, 39.3), and the original growth curve model (26.0 points; 95% CI: 18.7, 33.3). At 12 months, the survival benefit of TAVR was also greater in the joint model (hazard ratio = 0.50; 95% CrI: 0.32, 0.73) than in the non-joint Bayesian model (0.54; 95% CrI: 0.37, 0.75) or the original Kaplan-Meier estimate (0.55; 95% CI: 0.40, 0.74).ConclusionsIn patients with severe symptomatic aortic stenosis and prohibitive surgical risk, the estimated benefits of TAVR on survival and health status compared with standard care were greater in joint Bayesian models than other approaches.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3