Affiliation:
1. The Psycho-Oncology Co-operative Research Group (PoCoG), University of Sydney, Sydney, Australia
2. Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
Abstract
Patient-reported outcomes are increasingly used in health research, including randomized controlled trials and observational studies. However, the validity of results in longitudinal studies can crucially hinge on the handling of missing data. This paper considers the issues of missing data at each stage of research. Practical strategies for minimizing missingness through careful study design and conduct are given. Statistical approaches that are commonly used, but should be avoided, are discussed, including how these methods can yield biased and misleading results. Methods that are valid for data which are missing at random are outlined, including maximum likelihood methods, multiple imputation and extensions to generalized estimating equations: weighted generalized estimating equations, generalized estimating equations with multiple imputation, and doubly robust generalized estimating equations. Finally, we discuss the importance of sensitivity analyses, including the role of missing not at random models, such as pattern mixture, selection, and shared parameter models. We demonstrate many of these concepts with data from a randomized controlled clinical trial on renal cancer patients, and show that the results are dependent on missingness assumptions and the statistical approach.
Subject
Health Information Management,Statistics and Probability,Epidemiology
Cited by
218 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献