Oxidative stress accelerates intestinal tumorigenesis by enhancing 8-oxoguanine-mediated mutagenesis in MUTYH-deficient mice

Author:

Ohno MizukiORCID,Takano NorikoORCID,Hidaka Kyoko,Sasaki Fumiko,Yamauchi KazumiORCID,Aoki YasunobuORCID,Nohmi Takehiko,Nakabeppu YusakuORCID,Nakatsu Yoshimichi,Tsuzuki Teruhisa

Abstract

Oxidative stress–induced DNA damage and its repair systems are related to cancer etiology; however, the molecular basis triggering tumorigenesis is not well understood. Here, we aimed to explore the causal relationship between oxidative stress, somatic mutations in pre-tumor-initiated normal tissues, and tumor incidence in the small intestines of MUTYH-proficient and MUTYH-deficient mice. MUTYH is a base excision repair enzyme associated with human colorectal cancer. Mice were administered different concentrations of potassium bromate (KBrO3; an oxidizing agent)–containing water for 4 wk for mutagenesis studies or 16 wk for tumorigenesis studies. AllMutyh−/−mice treated with >0.1% KBrO3developed multiple tumors, and the average tumor number increased dose dependently. Somatic mutation analysis ofMutyh−/−/rpsLtransgenic mice revealed that G:C  > T:A transversion was the only mutation type correlated positively with KBrO3dose and tumor incidence. These mutations preferentially occurred at 5′G in GG and GAA sequences inrpsL. This characteristic mutation pattern was also observed in the genomic region ofMutyh−/−tumors using whole-exome sequencing. It closely corresponded to signature 18 and SBS36, typically caused by 8-oxo-guanine (8-oxoG). 8-oxoG-induced mutations were sequence context dependent, yielding a biased amino acid change leading to missense and stop-gain mutations. These mutations frequently occurred in critical amino acid codons of known cancer drivers,ApcorCtnnb1, known for activating Wnt signal pathway. Our results indicate that oxidative stress contributes to increased tumor incidence by elevating the likelihood of gaining driver mutations by increasing 8-oxoG-mediated mutagenesis, particularly under MUTYH-deficient conditions.

Funder

Scientific Research

Japan Society for the Promotion of Science

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3