Direct detection of 8-oxo-dG using nanopore sequencing

Author:

Pagès-Gallego MarcORCID,van Soest Daan M. K.ORCID,Besselink Nicolle J. M.,Straver Roy,Keijer Janneke P.,Vermeulen CarloORCID,Marcozzi AlessioORCID,van Roosmalen Markus J.,van Boxtel RubenORCID,Burgering Boudewijn M. T.ORCID,Dansen Tobias B.ORCID,de Ridder JeroenORCID

Abstract

AbstractGenomic DNA is constantly subjected to oxidative damage, which is thought to be one of the major drivers of cancer and age-dependent decline. The most prominent consequence is the modification of guanine into 8-hydroxyguanine (8-oxo-dG), which has important mutagenic potential and plays a role in methylation-mediated gene regulation. Methods to simultaneously detect and quantify 8-oxo-dG within its genomic context have been lacking; mainly because these methods rely on indirect detection or are based on hydrolysis of the DNA. Nanopore sequencing has been deployed for the direct detection of base-modifications like cytosine methylation during sequencing. However, currently there is no model to detect 8-oxo-dG by nanopore sequencing due to the lack of training data. Here, we developed a strategy based on synthetic oligos to create long DNA molecules with context variability for effective deep learning and nanopore sequencing. Moreover, we showcase a training approach suitable to deal with the extreme scarceness of 8-oxo-dG compared to canonical G to enable specific 8-oxo-dG detection. Applied to an inducible tissue culture system for oxidative DNA damage, our approach reveals variable 8-oxo-dG distribution across the genome, a dissimilar context pattern to C>A mutations, and concurrent 5-mC depletion within a 2-kilobase window surrounding 8-oxo-dG sites. These findings not only underscore the potential of nanopore sequencing in epigenetic research, but also shed light on 8-oxo-dG’s role in genomic regulation. By simultaneously measuring 5-mC and 8-oxo-dG at single molecule resolution, our study provides insights into the functional interplay between these DNA modifications. Moreover, our approach using synthetic oligos to generate a ground truth from machine learning modification calling could be applied to any other DNA modification. Overall, our work contributes to advancing the field of epigenetics and highlights nanopore sequencing as a powerful tool for studying DNA modifications.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3