Drone-based effective counting and ageing of hippopotamus (Hippopotamus amphibius) in the Okavango Delta in Botswana

Author:

Inman Victoria L.ORCID,Kingsford Richard T.,Chase Michael J.,Leggett Keith E. A.

Abstract

AbstractAccurately estimating hippopotamus (Hippopotamus amphibius) numbers is difficult due to their aggressive nature, amphibious lifestyle, and habit of diving and surfacing. Traditionally, hippos are counted using aerial surveys and land/boat surveys. We compared estimates of numbers of hippos in a lagoon in the Okavango Delta, counted from land and video taken from a DJI Phantom 4™ drone, testing for effectiveness at three heights (40 m, 80 m, and 120 m) and four times of day (early morning, late morning, early afternoon, and late afternoon). In addition, we determined effectiveness for differentiating age classes (juvenile, subadult, and adult), based on visual assessment and measurements from drone images, at different times and heights. Estimates in the pool averaged 9.18 (± 0.25SE, range 1 – 14, n = 112 counts). Drone counts at 40 m produced the highest counts of hippos, 10.6% higher than land counts and drone counts at 80 m, and 17.6% higher than drone counts at 120 m. Fewer hippos were counted in the early morning, when the hippos were active and most likely submerged, compared to all other times of day, when they tended to rest in shallow water with their bodies exposed. We were able to assign age classes to similar numbers of hippos from land counts and counts at 40 m, although land counts were better at identifying juveniles and subadults. Early morning was the least effective time to age hippos given their active behaviour, increasingly problematic with increasing height. Use of a relatively low-cost drone provided a rigorous and repeatable method for estimating numbers and ages of hippos, but not in the early morning.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Lewison RL , Pluháček J . Hippopotamus amphibius. The IUCN Red List of Threatened Species. 2017. Available: http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T10103A18567364.en

2. Eksteen JJ . The determination of acceptable hippo densities in the Crocodile River, outside Kruger National Park. MSc Thesis, University of the Witwatersrand. 1993.

3. Census of the Mara River hippopotamus (Hippopotamus amphibius), southwest Kenya, 1980–1982;Afr J Ecol,1984

4. Kujirakwinja D . The status and conservation of common hippopotamuses in Virunga National Park, Democratic Republic of Congo. M.Sc. Thesis, University of Cape Town, 2010.

5. The density of Hippopotamus amphibius, Linneaus at Lake Naivasha Kenya;Trop Freshw Biol,1990

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3