Evaluation of an Innovative Rosette Flight Plan Design for Wildlife Aerial Surveys with UAS

Author:

Linchant Julie1ORCID,Lejeune Philippe1ORCID,Quevauvillers Samuel1,Vermeulen Cédric1ORCID,Brostaux Yves2ORCID,Lhoest Simon1ORCID,Michez Adrien1ORCID

Affiliation:

1. TERRA Teaching and Research Centre [Forest Is Life], Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium

2. Modelisation & Development Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium

Abstract

(1) Regular wildlife abundance surveys are a key conservation tool. Manned aircraft flying transects often remain the best alternative for counting large ungulates. Drones have cheaper and safer logistics, however their range is generally too short for large-scale application of the traditional method. Our paper investigates an innovative rosette flight plan for wildlife census, and evaluates relevance of this sampling protocol by comparing its statistical performance with transects, based on numerical simulations. (2) The UAS flight plan consisted in two rosettes of 6 triangular “petals” spread across the survey area, for a theoretical sampling rate of 2.95%, as opposed to a 20.04% classic sampling protocol with systematic transects. We tested the logistics of our survey design in Garamba National Park. We then modeled theoretical population distributions for both antelopes and buffaloes. We calculated animal densities in the simulated footprints of the theoretical rosette and transect flight plans. We also tested aggregating results for 2, 3 and 4 repetitions of the same rosette flight plan to increase the sampling rate. (3) Simulation results showed that the coefficient of variation associated with density estimates decreases with the number of repetitions of the rosette flight plan, and aggregating four repetitions is enough to give antelope densities with acceptable accuracy and precision while staying at a lower sampling rate. Buffalo densities displayed much higher variability and it shows the significant impact of gregariousness on density estimate accuracy and precision. (4) The method was found to be inappropriate for highly aggregative species but efficient for species that disperse widely and more randomly in their environment. Logistics required to perform a full survey in the field remain time- and resources-intensive. Therefore, we recommend it for remote parks facing difficulties to organize manned aerial counts. Lower costs and developments such as solar UASs offer interesting future perspectives.

Funder

European Union

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3