Abstract
AbstractBacteria need to adjust their metabolism and protein synthesis simultaneously to adapt to changing nutrient conditions. It’s still a grand challenge to predict how cells coordinate such adaptation due to the cross-regulation between the metabolic fluxes and the protein synthesis. Here we developed a dynamic Constrained Allocation Flux Balance Analysis method (dCAFBA), which integrates flux-controlled proteome allocation and protein limited flux balance analysis. This framework can predict the redistribution dynamics of metabolic fluxes without requiring detailed enzyme parameters. We reveal that during nutrient up-shifts, the calculated metabolic fluxes change in agreement with experimental measurements of enzyme protein dynamics. During nutrient down-shifts, we uncover a switch of metabolic bottleneck from carbon uptake proteins to metabolic enzymes, which disrupts the coordination between metabolic flux and their enzyme abundance. Our method provides a quantitative framework to investigate cellular metabolism under varying environments and reveals insights into bacterial adaptation strategies.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献