Abstract
AbstractThe global regulation of cell growth rate on gene expression perturbs the performance of gene networks, which would impose complex variations on the cell-fate decision landscape. Here, we utilize a simple synthetic circuit of mutual repression that allows a bistable landscape, to examine how such global regulation would affect the stability of phenotypic landscape and the accompanying dynamics of cell-fate determination. We show that the landscape experiences a growth-rate-induced bifurcation between monostability and bistability. Theoretical and experimental analyses reveal that this bifurcating deformation of landscape arises from the unbalanced response of gene expression to growth variations. The path of growth transition across the bifurcation would reshape cell-fate decisions. These results demonstrate the importance of growth regulation on cell-fate determination processes, regardless of specific molecular signalling or regulation.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献