Multiple axes of visual system diversity in Ithomiini, an ecologically diverse tribe of mimetic butterflies

Author:

Wainwright J. BenitoORCID,Schofield Corin,Conway MaxORCID,Phillips DanielORCID,Martin-Silverstone ElizabethORCID,Brodrick Emelie A.ORCID,Cicconardi Francesco,How Martin J.ORCID,Roberts Nicholas W.ORCID,Montgomery Stephen H.

Abstract

AbstractThe striking structural variation seen in arthropod visual systems can be explained by availability of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arise across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific, intraspecific and intraindividual variation in the visual system of four ithomiine butterfly species. These species are part of a diverse Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. By using a combination of selection analyses on visual opsin sequences, in-vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy, and neural tracing, we quantify and describe physiological, anatomical, and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including i) habitat-associated relaxed selection on visual opsins, ii) interspecific shifts in visual system physiology and anatomy, and iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at both the perceptual, processing, and molecular level.Summary statementPhysiological, anatomical, and molecular evidence of extensive visual system variation within a diverse butterfly radiation, hinting at the lability of visual systems to evolve specialisations to distinct visual environments.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3