1. Abadi, M. , Agarwal, A. , Barham, P. , Brevdo, E. , Chen, Z. , Citro, C. , Corrado, G.S. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Goodfellow, I. , Harp, A. , Irving, G. , Isard, M. , Jia, Y. , Jozefowicz, R. , Kaiser, L. , Kudlur, M. , Levenberg, J. , Mane, D. , Monga, R. , Moore, S. , Murray, D. , Olah, C. , Schuster, M. , Shlens, J. , Steiner, B. , Sutskever, I. , Talwar, K. , Tucker, P. , Vanhoucke, V. , Vasudevan, V. , Viegas, F. , Vinyals, O. , Warden, P. , Wattenberg, M. , Wicke, M. , Yu, Y. , Zheng, X ., 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
2. Advances in decomposing complex metabolite mixtures using substructure- and network-based computational metabolomics approaches;Natural Product Reports,2021
3. Ahmad, W. , Simon, E. , Chithrananda, S. , Grand, G. , Ramsundar, B ., 2022. ChemBERTa-2: Towards Chemical Foundation Models. https://doi.org/10.48550/arXiv.2209.01712
4. Global chemical analysis of biology by mass spectrometry;Nat Rev Chem,2017
5. Bai, S. , Kolter, J.Z. , Koltun, V ., 2018. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. https://doi.org/10.48550/arXiv.1803.01271