Author:
Baygi Sadjad Fakouri,Barupal Dinesh Kumar
Abstract
Abstract
The majority of tandem mass spectrometry (MS/MS) spectra in untargeted metabolomics and exposomics studies lack any annotation. Our deep learning framework, Integrated Data Science Laboratory for Metabolomics and Exposomics—Mass INTerpreter (IDSL_MINT) can translate MS/MS spectra into molecular fingerprint descriptors. IDSL_MINT allows users to leverage the power of the transformer model for mass spectrometry data, similar to the large language models. Models are trained on user-provided reference MS/MS libraries via any customizable molecular fingerprint descriptors. IDSL_MINT was benchmarked using the LipidMaps database and improved the annotation rate of a test study for MS/MS spectra that were not originally annotated using existing mass spectral libraries. IDSL_MINT may improve the overall annotation rates in untargeted metabolomics and exposomics studies. The IDSL_MINT framework and tutorials are available in the GitHub repository at https://github.com/idslme/IDSL_MINT.
Scientific contribution
Structural annotation of MS/MS spectra from untargeted metabolomics and exposomics datasets is a major bottleneck in gaining new biological insights. Machine learning models to convert spectra into molecular fingerprints can help in the annotation process. Here, we present IDSL_MINT, a new, easy-to-use and customizable deep-learning framework to train and utilize new models to predict molecular fingerprints from spectra for the compound annotation workflows.
Funder
National Center for Advancing Translational Sciences
National Institute of Environmental Health Sciences
Eunice Kennedy Shriver National Institute of Child Health and Human Development
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献