The magnitude and time course of pre-saccadic foveal prediction depend on the conspicuity of the saccade target

Author:

Kroell Lisa M.ORCID,Rolfs Martin

Abstract

AbstractWe previously demonstrated that during the preparation of a large-scale saccadic eye movement, defining features of the eye movement target (i.e., its orientation) are anticipated in pre-saccadic foveal vision (Kroell & Rolfs, 2022). Here, we show that the conspicuity of orientation information at the saccade target location influences the magnitude and time course of foveal enhancement. As in our previous study, observers prepared a saccade to a peripheral orientation signal (the target) while monitoring the appearance of a second orientation signal (the probe) in their pre-saccadic center of gaze. The probe appeared on 50% of trials and either had the same orientation as the target (congruent) or a different orientation (incongruent). In the current study, we manipulated the opacity of the target against the 1/f background noise in four logarithmic steps from 25–90%. An increase in opacity translates to an increase in luminance contrast and in the signal-to-noise ratio of orientation information within the target region. We made three main observations: First, foveal Hit Rates for target-congruentandincongruent probes decreased as target opacity increased, presumably since attention was increasingly drawn to the target the more salient it became. Crucially, foveal enhancement defined as the difference between congruent and incongruent Hit Rates increased with opacity. Second, foveal enhancement emerged earlier as target opacity increased, likely since the peripheral target was processed faster at higher contrasts. Third, unlike the difference in Hit Rates, the difference in False Alarm Rates did not vary with opacity. Instead, reverse correlations suggest that at higher target opacities, False Alarms were increasingly triggered by signal, that is, by incidental orientation information in the foveal noise. Beyond providing new mechanistic insights into active foveal processing, these findings are relevant for researchers planning to adapt our paradigm to study related questions. Presenting the saccade target at a high signal-to-noise ratio appears beneficial as congruency effects, especially when time-resolved, are most robustly detectable.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3