Visual Cortex Neurons of Monkeys and Cats: Temporal Dynamics of the Contrast Response Function

Author:

Albrecht Duane G.1,Geisler Wilson S.1,Frazor Robert A.1,Crane Alison M.1

Affiliation:

1. Department of Psychology, University of Texas, Austin, Texas 78712

Abstract

Cortical neurons display two fundamental nonlinear response characteristics: contrast-set gain control (also termed contrast normalization) and response expansion (also termed half-squaring). These nonlinearities could play an important role in forming and maintaining stimulus selectivity during natural viewing, but only if they operate well within the time frame of a single fixation. To analyze the temporal dynamics of these nonlinearities, we measured the responses of individual neurons, recorded from the primary visual cortex of monkeys and cats, as a function of the contrast of transient stationary gratings that were presented for a brief interval (200 ms). We then examined 1) the temporal response profile (i.e., the post stimulus time histogram) as a function of contrast and 2) the contrast response function throughout the course of the temporal response. We found that the shape and complexity of the temporal response profile varies considerably from cell to cell. However, within a given cell, the shape remains relatively invariant as a function of contrast and appears to be simply scaled and shifted. Stated quantitatively, approximately 95% of the variation in the temporal responses as a function of contrast could be accounted for by scaling and shifting the average poststimulus time histogram. Equivalently, we found that the overall shape of the contrast response function (measured every 2 ms) remains relatively invariant from the onset through the entire temporal response. Further, the contrast-set gain control and the response expansion are fully expressed within the first 10 ms after the onset of the response. Stated quantitatively, the same, scaled Naka-Rushton equation (with the same half-saturation contrast and expansive response exponent) provides a good fit to the contrast response function from the first 10 ms through the last 10 ms of the temporal response. Based upon these measurements, it appears as though the two nonlinear properties, contrast-set gain control and response expansion, are present in full strength, virtually instantaneously, at the onset of the response. This observation suggests that response expansion and contrast-set gain control can influence the performance of visual cortex neurons very early in a single fixation, based on the contrast within that fixation. In the discussion, we consider the implications of the results within the context of 1) slower types of contrast gain control, 2) discrimination performance, 3) drifting steady-state measurements, 4) functional models that incorporate response expansion and contrast normalization, and 5) structural models of the biochemical and biophysical neural mechanisms.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3