Growth media affects susceptibility of air-lifted human nasal epithelial cell cultures to SARS-CoV2, but not Influenza A, virus infection

Author:

Resnick Jessica D.,Wilson Jo L.,Anaya Eddy,Conte Abigail,Li Maggie,Zhong William,Beer Michael A.,Pekosz AndrewORCID

Abstract

ABSTRACTPrimary differentiated human epithelial cell cultures have been widely used by researchers to study viral fitness and virus-host interactions, especially during the COVID19 pandemic. These cultures recapitulate important characteristics of the respiratory epithelium such as diverse cell type composition, polarization, and innate immune responses. However, standardization and validation of these cultures remains an open issue. In this study, two different expansion medias were evaluated and the impact on the resulting differentiated culture was determined. Use of both Airway and Ex Plus media types resulted in high quality, consistent cultures that were able to be used for these studies. Upon histological evaluation, Airway-grown cultures were more organized and had a higher proportion of basal progenitor cells while Ex Plus-grown cultures had a higher proportion terminally differentiated cell types. In addition to having different cell type proportions and organization, the two different growth medias led to cultures with altered susceptibility to infection with SARS-CoV-2 but not Influenza A virus. RNAseq comparing cultures grown in different growth medias prior to differentiation uncovered a high degree of differentially expressed genes in cultures from the same donor. RNAseq on differentiated cultures showed less variation between growth medias but alterations in pathways that control the expression of human transmembrane proteases includingTMPRSS11andTMPRSS2were documented. Enhanced susceptibility to SARS-CoV-2 cannot be explained by altered cell type proportions alone, rather serine protease cofactor expression also contributes to the enhanced replication of SARS-CoV-2 as inhibition with camostat affected replication of an early SARS-CoV-2 variant and a Delta, but not Omicron, variant showed difference in replication efficiency between culture types. Therefore, it is important for the research community to standardize cell culture protocols particularly when characterizing novel viruses.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3