Bystander monocytic cells drive infection-independent NLRP3 inflammasome response to SARS-CoV-2

Author:

Hsieh Leon L.12ORCID,Looney Monika1,Figueroa Alexis1,Massaccesi Guido1,Stavrakis Georgia12,Anaya Eduardo U.2,D'Alessio Franco R.1,Ordonez Alvaro A.3,Pekosz Andrew S.2ORCID,DeFilippis Victor R.4,Karakousis Petros C.125ORCID,Karaba Andrew H.1ORCID,Cox Andrea L.12ORCID

Affiliation:

1. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

2. W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA

3. Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

4. Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA

5. Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

Abstract

ABSTRACT The pathogenesis of COVID-19 is associated with a hyperinflammatory immune response. Monocytes and macrophages play a central role in this hyperinflammatory response to SARS-CoV-2. NLRP3 inflammasome activation has been observed in monocytes of patients with COVID-19, but the mechanism and consequences of inflammasome activation require further investigation. In this study, we inoculated a macrophage-like THP-1 cell line, primary differentiated human nasal epithelial cell (hNEC) cultures, and primary monocytes with SARS-CoV-2. We found that the activation of the NLRP3 inflammasome in macrophages does not rely on viral replication, receptor-mediated entry, or actin-dependent entry. SARS-CoV-2 productively infected hNEC cultures without triggering the production of inflammasome cytokines IL-18 and IL-1β. Importantly, these cytokines did not inhibit viral replication in hNEC cultures. SARS-CoV-2 inoculation of primary monocytes led to inflammasome activation and induced a macrophage phenotype in these cells. Monocytic cells from bronchoalveolar lavage (BAL) fluid, but not from peripheral blood, of patients with COVID-19, showed evidence of inflammasome activation, expressed the proinflammatory marker CD11b, and displayed oxidative burst. These findings highlight the central role of activated macrophages, as a result of direct viral sensing, in COVID-19 and support the inhibition of IL-1β and IL-18 as potential therapeutic strategies to reduce immunopathology without increasing viral replication. IMPORTANCE Inflammasome activation is associated with severe COVID-19. The impact of inflammasome activation on viral replication and mechanistic details of this activation are not clarified. This study advances our understanding of the role of inflammasome activation in macrophages by identifying TLR2, NLRP3, ASC, and caspase-1 as dependent factors in this activation. Further, it highlights that SARS-CoV-2 inflammasome activation is not a feature of nasal epithelial cells but rather activation of bystander macrophages in the airway. Finally, we demonstrate that two pro inflammatory cytokines produced by inflammasome activation, IL-18 and IL-1β, do not restrict viral replication and are potential targets to ameliorate pathological inflammation in severe COVID-19.

Funder

Bill and Melinda Gates Foundation

HHS | NIH | National Cancer Institute

JH Center of Excellence in Influenza research and Response

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | Health Resources and Services Administration

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3