Single-cell T cell receptor sequencing of paired tissue and blood samples reveals clonal expansion of CD8+ effector T cells in patients with calcific aortic valve disease

Author:

Bartoli-Leonard FrancescaORCID,Chelvanambi SarveshORCID,Pham Tan,Turner Mandy E,Blaser Mark C,Caputo Massimo,Aikawa Masanori,Pang Amanda,Muehlschlegel Jochen,Aikawa Elena

Abstract

AbstractCalcific aortic valve disease (CAVD) is a complex cardiovascular pathology, culminating in aortic stenosis, heart failure and premature mortality, with no comprehensive treatment strategy, except valve replacement. While T cells have been identified within the valve, their contribution to pathogenesis remains unclear. To elucidate the heterogenous phenotype of the immune populations present within patients with CAVD, deep phenotypic screens of paired valve and peripheral blood cells were conducted via flow cytometry (n=20) and immunohistochemistry (n=10). Following identification of a significant population of memory T cells; specifically, CD8+ T cells within the valve, single cell RNA sequencing and paired single T cell receptor sequencing was conducted on a further 4 patients on CD45+ CD3+, CD4+ or CD8+ T cells. Through unsupervised clustering, 7 T cell populations were identified within the blood and 10 identified within the valve. Tissue resident memory (TRM) T cells were detected for the first time within the valve, exhibiting a highly cytotoxic, activated, and terminally differentiated phenotype. This pan-pro-inflammatory signal was differentially identified in T cells originating from the valve, and not observed in the blood, indicative of an adaptive, local not-systemic inflammatory signature in CAVD patients. T cell receptor analysis identified hyperexpanded clones within the CD8+ T cell central memory (TCM) population, with TRMcells comprising the majority of large and medium clonal expansion within the entire T cell population. Clonal interaction network analysis demonstrated the greatest proportion of clones originating from CD8+ T cell effector memory (TEM) and CD4+ naïve / TCMpopulations and ending in the CD8+ TRMand CD8+ TCMclusters, suggesting a clonal expansion and predicted trajectory of T cells towards a tissue resident, cytotoxic environment within the valve. CDR3 epitope predictive analysis identified 7 potential epitope targets, of whichGALNT4andCR1Lhave previously been implicated in a cardiovascular context as mediators of inflammation. Taken together, the data identified T cell sub-populations within the context of CAVD and further predicted possible epitopes responsible for the clonal expansion of the valvular T cells, which may be important for propagating inflammation in CAVD.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3