Altered Inflammatory State and Mitochondrial Function Identified by Transcriptomics in Paediatric Congenital Heart Patients Prior to Surgical Repair

Author:

Bartoli-Leonard Francesca12ORCID,Harris Amy G.1ORCID,Saunders Kelly2,Madden Julie2,Cherrington Carrie2,Sheehan Karen2ORCID,Baquedano Mai1,Parolari Giulia2,Bamber Andrew3,Caputo Massimo12

Affiliation:

1. Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1UD, UK

2. Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol BS2 8ED, UK

3. North Bristol NHS Trust, Westbury on Trym, Bristol BS10 5NB, UK

Abstract

Congenital heart disease (CHD) remains the most common birth defect, with surgical intervention required in complex cases. Right ventricle (RV) function is known to be a major predictor of sustained cardiac health in these patients; thus, by elucidating the divergent profiles between CHD and the control through tissue analysis, this study aims to identify new avenues of investigation into the mechanisms surrounding reduced RV function. Transcriptomic profiling, in-silico deconvolution and functional network analysis were conducted on RV biopsies, identifying an increase in the mitochondrial dysfunction genes RPPH1 and RMPR (padj = 4.67 × 10−132, 2.23 × 10−107), the cytotoxic T-cell markers CD8a, LAGE3 and CD49a (p = 0.0006, p < 0.0001, and p = 0.0118) and proinflammatory caspase-1 (p = 0.0055) in CHD. Gene-set enrichment identified mitochondrial dysfunctional pathways, predominately changes within oxidative phosphorylation processes. The negative regulation of mitochondrial functions and metabolism was identified in the network analysis, with dysregulation of the mitochondrial complex formation. A histological analysis confirmed an increase in cellular bodies in the CHD RV tissue and positive staining for both CD45 and CD8, which was absent in the control. The deconvolution of bulk RNAseq data suggests a reduction in CD4+ T cells (p = 0.0067) and an increase in CD8+ T cells (p = 0.0223). The network analysis identified positive regulation of the immune system and cytokine signalling clusters in the inflammation functional network, as there were lymphocyte activation and leukocyte differentiation. Utilising RV tissue from paediatric patients undergoing CHD cardiac surgery, this study identifies dysfunctional mitochondrial pathways and an increase in inflammatory T-cell presence prior to reparative surgery.

Funder

Elizabeth Blackwell Institute

University of Bristol

Wellcome Trust Institutional Strategic Support Fund

BHF Translational Award Grant

British Heart Foundation Professor of Congenital Cardiac Surgery

Bristol NIHR Biomedical Research Centre

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3