Protective intravenous BCG vaccination induces enhanced immune signaling in the airways

Author:

Peters Joshua M.,Irvine Edward B.,Rosenberg Jacob M.,Wadsworth Marc H.,Hughes Travis K.,Sutton Matthew,Nyquist Sarah K.,Bromley Joshua D.,Mondal Rajib,Roederer Mario,Seder Robert A.,Darrah Patricia A.,Alter Galit,Flynn JoAnne L.,Shalek Alex K.,Fortune Sarah M.,Bryson Bryan D.ORCID

Abstract

AbstractIntradermal (ID) Bacillus Calmette–Guérin (BCG) is the most widely administered vaccine in the world. However, ID-BCG fails to achieve the level of protection needed in adults to alter the course of the tuberculosis epidemic. Recent studies in non-human primates have demonstrated high levels of protection againstMycobacterium tuberculosis(Mtb) following intravenous (IV) administration of BCG. However, the protective immune features that emerge following IV BCG vaccination remain incompletely defined. Here we used single-cell RNA-sequencing (scRNAseq) to transcriptionally profile 157,114 unstimulated and purified protein derivative (PPD)-stimulated bronchoalveolar lavage (BAL) cells from 29 rhesus macaques immunized with BCG across routes of administration and doses to uncover cell composition-, gene expression-, and biological network-level signatures associated with IV BCG-mediated protection. Our analyses revealed that high-dose IV BCG drove an influx of polyfunctional T cells and macrophages into the airways. These macrophages exhibited a basal activation phenotype even in the absence of PPD-stimulation, defined in part by IFN and TNF-α signaling up to 6 months following BCG immunization. Furthermore, intercellular immune signaling pathways between key myeloid and T cell subsets were enhanced following PPD-stimulation in high-dose IV BCG-vaccinated macaques. High-dose IV BCG also engendered quantitatively and qualitatively stronger transcriptional responses to PPD-stimulation, with a robust Th1-Th17 transcriptional phenotype in T cells, and augmented transcriptional signatures of reactive oxygen species production, hypoxia, and IFN-γ response within alveolar macrophages. Collectively, this work supports that IV BCG immunization creates a unique cellular ecosystem in the airways, which primes and enables local myeloid cells to effectively clearMtbupon challenge.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3